
I
-> a bash command-line interface (ali) prompt ,

also known as a

Learn a Command Line Interface Ch2 : The Sorcerer's Shell

What is "learneli$" ? -What
you see as the last line in

your
terminal

shell prompt .

How does the CLI work , on basically
, you type a command into the shell prompt (there are MANY,

a broad level ? we will learn about them)
,
Followed by whatever parameters /specifications

the command dictates.

-> then
, you presse and the CLI reads your command

, interprets

it
,
and attempts to carry out your request !

What is the "Us" program ?
-> A standard utility program found in the /bin directory
-> The sole purpose of the Is program

is to list the files contained

in directories.

How do
you use the Is -> By typing in the command

,
"Is"

,
followed by (a space

& then) the

program ? name of the directory (in the formatdirectory names)

· the C2I will return a list of all files contained in that directory .

Example of using Is ? TERMINAL↑
cat

[---]

af link realpath test

learneli$ Is/bin -> hit ENTER & this appears :

bash dd launchett pud Ash

chmod echo ⑮e um unlink

What is the bindirectory? - "bin"-short for "binary program files"

-> Stores files which your computer can evaluate as a program-like Is !

How do you learn what a command -> run the program in "help mode" by typing the program name
,

followed

line program is useful for ? by the-help argument :

learnalis Is-help

-> this command prints out a bunch of text that contains info abork

the program's purpose , Usage ,
and options.

-> help usually prints out a lott of info-so much so that the text

might scroll off of
your screen.

How do we see less text output1 With the less program !

at a time ?
-> Type Is-help / less to only see a single screen of output at a time.

->

Reyboard Shortcuts in less : Key

I
Motion

F page down

b page up
I

I
K ! scroll up

Key Motion

j scroll down (by line

q Quit

What is a "pipe" in -> Away to connect programs together ,
that connects the out put of one

the Unix command line ? CLI program to the input of another- leading to a multiplicative

effect on the no · of tasks you can carry out.

-> represented by the vertical bar character
,
I--like when we

did Is-help I less !

-> Pipes are part of an important Unix C . L . concept called
composing programs.

What does man do ? -> A program to read the manuals of other programs· Running the command

learncli manIs

replaces the terminal's content with the manual for theIs program
.

What is in the manual ? ↑ -> All of the info in a given programs help mode
,
and more !

-> Unlike the text that comes up when you do-help ,
manual pages have

consisted
,
improved formatting already organized into pages.

· scroll the manual using the same keys used to navigate less (prerpages
What is the cat program

?
- reads data from a file and gives/prints its content as output.

cat lusr/share/dict/words

What does the TAB key do? - When you are typing in a command and press HAB
,

the shell art completes

Whatever it thinks
you are trying to type

- or gives you several options

if there's more than one possibility .

·Similar to the thing on iPhones where 3 boxes of word options come up while us texting
·

especially useful when typing in the file path of a file.

What do thedo -> flips back & Forth between previously used commands in your
keys do ?

history (so you
don't have to retype them if

you want to reuse them)
What does the clear program ->

typing in the clear command clears your terminal screen &

do ?
resets the learnali prompt to the top of the terminal .

What is the grep program ? - Uses textual patterns to search for textual matches ..- basically like

&F but
way cooler !

-> the command Follows the format brackets indicate optional
-

grep COPTIONS] PATTERN [FILE ...]
↑

arguments that can be left blank

b ↳ ellipsis indicates you can list multiple
the string of characters

files (separated by spaces) ,
and grepthat you are searching for

Will search all of them

->

grep prints out all lines of
every

listed file that contain a textual match.

Examples using grep? learnali
grep motion lus/dictionary

commotion · prints all lines of the dictionary containing
demotion the string "motion"

· learnali
grep "motion /vsr/dictionary

motion · the character anchors the pattern

motion's to the start of a line !

motioned · returns all lines beginning with "motion"

--

· learncli
grep "g .. p$ /usr/dictionary

gasp
· the $ character anchors the pattern to

glop ↓he end of a line !

goop · the character matches "any character" So basically
gulp used as a placeholder if you want to specify how long
- the search string will be.

· returns all strings beginning with a g , ending
with p

,
& with 2 characters in between

What type of
program is grep ?

-> A command-line program that filters data .

-> such programs tend to operate in one of two
ways :

1. accept a list of files to process (like in the examples above)

· this is a convenient but not all - that-significant feature

2.
operate on data piped into them by other programs !

· An essential & more powerful feature/rsage of
grep .

Examples of using grep with learneli$ Is /bin / grepg .. p$

pipes ? grep
· Instead of providing the optional (FILE...] argument ,

we have grep search

gzip r
the output of "Is/bin"-which is the list of file names inside /bin

·

The command returned the only lines/file names matching the

specified argument.

-> cat is an especially useful program to use in conjunction with grep ,
as we can

search the contents of a file being read by cat

What does the command"history" -> prints a list of the trail of commands you have recently run-aka your

do ? command log.

I
File system ,

where you can search
, organize ,

rename
,
etc . files all just

Ch .
2 : Directories

,

Files
,
and Paths

What is a file system ? -> a way to organize all of your projects & other work in files and directories

-> The Finder application on a Mac is a GUI-based way to navigate your

by pointing and clicking.
So why should you even try to ->

Although it takes more effort to learn
,
it provides you with a LOT more power.

navigate your filesystem viathe -> Using a CLI
, you can easily automate repetitive filesystem tasks

,
such as

· something that world likely take days or hours to do via the GUI

What is a directory ? - the fundamental unit of organization in a file system

CLI ?

↑ renaming 1000s of files from one naming convention to another

->

Every directory can contain files
,

as well as other directories in a hierarchical

relationship

-> there is one root directory that has all other directories &Files as its

descendants.

-> "directory" -

synonymous with "Folder" (like in G01 style view)

How do you access the list of -> RECALL : the program to list the contents of a directory is Is
.

To list the

contents in the root directory ? contents of the root directory ,
use learneli Is /

- The Forward slash/is how you
refer to the root directory !

· /bin = The bin directory ,
located in the roof directory

·

/usr/share = File path for the share directory ,
located in the use directory

&

·
located in the root directory !

And so on...

What is a path ? - The textual "address" of a directory or file in the file system.

-> When wanting a
program to operate on a file (like grep) , you providethe file

path as an argument !
-

What is an absolute path ? -> Paths which begin with aForward slash
, referencing the root directory.

What is the base name ? -> The last name in a file path , which is the file/directory that the path is

specifically referring to - the "target" of the path .

What is the "dirname" of a
->

Everything that comes before the basename
, including the forward slash.

path ? -> Represents the 'path' that is leading you to the target.

dirname + basename = absolute path

/usr/share/diet/ words Jusr/share/dict/words
What is a "working directory" ? - When you

need to work on many files in a single directory , typing all of their

absolute paths all the time would become tiring.

What does the pwd program do?

I
-> Prints the path of your cement working directory !

-> Instead
,

we can tell the shell that that directory is ourking
&rectory

,
and then

only need to write shorter
,

less redundant

"relative paths" to files in it.

-> The shell already maintains a current w . d . as part of its state (though
we can easily change this)

. Currently
,

learnalia1l% prints out

/Users/avikumar/learncli2II

How do we change our
-> With the ed command ,

Followed by the Filepath to the directory

working directory ? we want
.

C
.

d = "Change directory"
learnali$cd/usr/share/dict < changed the W . d .

- confirmed

learnalis pud with the pwd command's printort

Jusr/share/dict L

What happens if
you typeIs

-> It prints the list of contents of the current working directory , by default
.

without any proceeding arguments ? learncli$ Is

american-english words

What is an example of how a w . d.
-> If we want to use cat to print the contents of a file

,
we can now simply use the

↑

↑
and vice versa .

↑
the relative path'

makes it easier to type commands ? relative path to refer to the same file - since its absolute path has already

been specified :

learnali$ cat Jusr/share/dict/words /less DRECALLCh . 1)

⑮
learnalis cat words / less

When should we use each type
-> either kind of path-relative or absolute -

can be used anywhere that a

of path ? path is expected ! You can freely substitute absolute with relative paths,

How does the learnal - The learnali container's insystem is separate from that of

container work ? my PC
, meaning that changes I make in

my container's file system

all revert back to their original stateWhenever l exit my learnali

Session (w/exit command) - which is good for when I make accidental

changes .

What aboutthe learneli -> HOWEVER
,

the actual /learnali directory is different - it belongs to

directory ? my computer's file system (you can literally open the learnalill folder

on Finder by going to avikumar -> learncli2i1/

· this means that all files within it are accessible & modifiable by my
PC

-> The lusers/avikumar/learncli directory is "mounted into" the learnal i container.

I
LICENSE lab-00-aviong Sh

learneli2II % Is

a. out learnali
. ps1 work dir

bin learnali . Sh

-> Typing open .

into the learnalial% prompt opens
the corresponding

directory in the GUI (Finder application)

How do you create new -> With the C21 mkdir program
& command

directories using tha terminal ? - Makes a new directory inside of the current w
. d.

learnalisad work dir
creates new directory called "Ch2"

workdir mkdirch2 < inside of "Workdir"

How do
you copy files in the -With the up program command ! We can make a copy of a "source" File &

terminal ? place it in a "target" file or directory
.

-> There are I ways to use the up command :

1.
up + [path of SOURCE file] + [path of TARGET file]

· copies contents of one file into another

2 .

up
+ 2 path of SOURCE] . 00 (path of TARGET directory]
· creates copies of source filek) & adds them to target directory

the
·

ellipsis means we can list multiplesre files
, separated by spaces

What is --verbose ?

↑
-> An argument that you can use when running programs that will cause them to

learnclizl1$ ch2 % up /usr/share/dict/words words

· copies the content of of into a file called off in ourthe directory.

What does the up--recursive option do? -> Copies entire directories & their contents
.

print out the actions it performed when you ran it .

· basically if
you want to know exactly what the program is doing

-> On Man terminal
,

enter this argument as the Flag"-V" :

mkdir-v practice-directory

mkdir : created directory 'practice-directory'
What are "hidden dot Files" ? - files and directories which begin with a period ,

""
,

and are considered

"hidden" files - they aren't displayed when listing a directory's content

With15
.

-> Typically used to store the settings, preferences ,
and metadata of tools & projects.

up words words-copy
How do we askIs to list

-> With the -a or - A arguments

hidden files ? -> - A lists all hidden files except"" And "
.

"

Karnalizl1$ch % Isa me
... words-copy a sub-dir words

What is
"

..

" ?

I
-> A link that automatically exists inside every directory

What is a "link" ? -> A third kind of file system entry (besides a file or a directory)
-> A link "points" to something else in a system

->
o . is the parent directory link

,
& points to the parent

directory of your current wid .

What is
"

.

" ? -> Another link that automatically exists inside every directory and

What is the point of the -> They basically provide a shorthand to make typing commands more

· and o links ? efficient (sort of like this in Java)

->
. is particularly useful when you want to specify the current directory as an↑ ->
links to itselfJaka points" to the current working directory

argument to a program which is expecting some directory's path.

Usage examples ? You can move to your parent directory using ad .. instead of

cd [name of parent dir]

-> To create d relative path to move "up" the Filesystem hierarchy by more

than one p .
d . at a time :

moved from a sub-dir to ah2
learnalizlI$a-sub-dir (d .. 0 .

to workdir

learneli2l1$ workdir

-> To copy a file from one directory to another with up & retain the

samePile name :

learncli$ up lusr/share/dict/american-english ·

learncli$ Is

american-english

How do
you

rename files -> With the mr program/command !

in a CLI ? ->
mv + [path of SOURCE file] + knew desired name]

learnali$mr words-copy words-copy
Is - A here

,
we moved the file named

a sub-dir american-english "words-copy" to the name

words words -

copy "Words-copy"

How do
you more files from - Also using the mu command

, except instead of anew desired name, "

one directory to another ? the 2nd argument should be the directory where we want to more the file :

learnali$mv words-copy a sub-dir

IS notice how words-copy no longer

a-sub-dir american-english words shows up in theIs of the crd..

Is a-sub-dir but it does show up in theIs of

words-copy
the target, a - sub-dir !

I
inside it !

What does the find -> It lists directories recursively
- aka

,
it lists the name of all files

program/command do ? and subdirectories in a given directory (which you specify as an argument) ·
but below each listed subdirectory ,

it also lists the names of the files

- As opposed to the Is command
,

which only lists the name of everything
in a given directory (but not the content inside

any subdirectories)

How do
you use find ? find + [path of starting-point directory]

What is an example of using
- say you have the following content inside your ch2 directory :

the find command ? words (file) a-sub-dir (directory) practice dir (dir)

words-copy (file words (File] book (file

-> UsingIs retrns a list of directory contents :

learneli2l$ch2 % Is

words words-copy a-sub-dir practice dir↑
· /a-sub-dir

↓

awd ,
" Ch2

-> Using find returns a recursive list of directory contents :

learnclizl1$ch2 % Find
.

- notice the referring to the

*

#words noticethe being used as ashorthand for "" in the relairas

· Ja-sub-dir/words
· /practice dir

·/ practice dir/book

·/ words -

copy

How do
you delete files from With the rm program/ command !

the command line? -> rm will only delete files
,

not directories - unless you use the -d

argument.

learneli2e$ch2% rm words

How do you delete
empty

-> Using rmdir

directories ? learnciell$ ch2 % rma-sub-dir

How do you delete non-empty -> Using im but with the-r argument ,
which stands for "recursive"

, meaning

directories ? it tells the ru program to traverse all subdirectories to delete files.

->
Be CAREFUL when running um recursively - use the -i argument,

which results in the terminal asking you to confirm
,
for each file

,
that you

want it deleted (you just type "y" or "n" to confirm or deny)

"The C Programming Language
"

Ch
.
1 : A tutorial Introduction //Programming Language Basics

What does a C program -> functions and variables

consist of ? · Functions : contain statements that specify the computing operations to be done

· Variables : store values used during the computation

What does a basic Hello World # include<Stdio .
h> 2.

"main" is a function that serves as the

6

program look like in C ?
J entry & exit location of your program .

int maind in'targe , chanang 2.
indicates that the return type orJ · this is where execution knows to begin.

printf("Hello ,
World ! In")i

the function is an int.

3.
Inside the parentheses is our list

return 0 ; z ③ of arguments ,separated by commas.

8 .

the 2 "arguments" :

· An array
of strings (referred to by the double character pointer

,
char**)

called "argy"
·

An integer called "arg(" telling us how many elements are inside the
array argu

5

Just like in Java
, curly brackets used to indicate where the function starts

and stops
-- aka defines the body of the function.

6 .

#include is a way to add some standard/already defined functionality in our

program ,
in this case by adding a "header file" with astdio .

h>

·

Stdio .
h is a standard input/output "library" that defines the function

"Printf" ... this library is the only reason we are allowed to use the printf

Function
,

since we haven't defined it ourselves in the program .

7
-

prints the string "Hello World !
"

and then moves the cursor to the next line,

because of In--which means "new line".

· print f = "formatted print
"

8.
the return statement-which is an integar ,

as specified by the function "int main" -

that says that our program is over.

What is the "In" ? -> notation for the "newline character
,

"

which puts the output to be printed on to the next line
.

-> You must useIn inside the printf argument ,
or the C compiler will produce an error message.

· unlike in Java
,
where it was an optional add-on

What is the major difference -> In Java, a program can have as

many main methods as we want (no limit

between main in Java V
. S. in -> In C

,
a program can only have one functioned called main.

C ?

How do we know what integer our

I
-> We can

,
hypothetically ,

return any integer we want. However
,
there is a general standard

program should return ? For diff int values & their meanings
- ala the "exit status" that they represent.

· the return value O indicates that our
program ran normally & with no error.

-> For example, a negative int return val
may indicate that the program

ran abnormally in some way.

Comparison to a Hello
,
World import java .

lang
. System ; > equivalent toinclude

program
in Java ? class myclass &
-

statements in C
1 .

public staticvoidmain (String[] args) E
same definition as that of

System - Out printf ("Hello
,
World ! In") ;

main for C (see prev. page)
3 < this statement is equivalent

3
to both of the arguments provided
for main in C LargC" &

"argv" from prev, page
-

While C is a function-oriented language ,
Java is not - it is an Object-Oriented

language .

Therefore
, any

"function" must actually exist as a method inside

some class (like the "main" method

-> Unlike Java
,

C does not have any concept of "classes"
How do you make comments in C ?

-> Same as Java ! With /

How do we compile programs ? - Unlike with Java
,
there's no IDE (like IntelliJ) where we can just

Collection ?

↑
an executable on our file system that we can run.

push a little green button & run our program .

-> Instead
,
we are going to use the GNU Compiler Collection (GCC)

What is the GNU Compiler -> A software
program that allows us to take the C sourcecode & create

What are some important flays +-g : produce/include debug information (used by GDB/valgrind)
used by GCC ? ->Werror : treat all warnings as errors (this will be our default)

· generally ,
when the compiler gives you a warning ,

it won't stop . It will still allow the

prog to execute
. Werror tells the compiler to treat the warning as an error instead.

-
-Wall : enable all compiler warnings .

-> - o [desired name] [code File] : creates an executable file on
your filesystem ,

from the provided

source codeFile.

How do we use GCC & the flags ? -> basically
,

we will already have somezode written in a text editor & saved as a file.

-> Then
, in the computer console

,
we can write a line like such :

gec-g-Werror-Wall-o First first.

↑ -
-

Which will then compile the code in the provided text editor file to create

an "executable" of the desiredfile name.

· We can choose which flags Lif any) we want to include in the goe
line (doesn't haveto

be all of them like in the ex above.)

How do we actually run the

I
-> By this line in your console :

"executable" produced by the compiler?
·/ [filename]. /first

-> this is the point at which "Hello
,
World" will appear on the console !

What is "stdio
.

h" ? -> (From the example 2
pages ago) it represents the standard input/

output library
-> Contains the code defining the printf function (output)

,
as well as the

scanf function (input) - wher by we read something input by the user.

· To use either of these functions
,

we must import Stdio
.
h using

include stdio . h >

What are format specifiers ? -> little symbols ,
all beginning with %, that are used to tell the

or that must be printed on the screen .↑ -

compiler about the type of data that must be input by a user,

Both printf & scanf use the following format specifiers (not an extensive list) :

% C for character type
% d For signed integer type

% If for double

%S for string
%% to print the "Y" character

How do you use format specifiers ? - for both scanf and printf ,
format specifiers are taken as a function argument,

inside of quotation marks.

Example of how to use scanf # include Stdio
.h >

2 creating a variable for the scanner to store its

and printf ? int main (intarge ,
Char

**

arg)& input in

2.
Format specifier saying that the scanner is

-intdi, expecting an integer in put

Printf("d =% d)n" , d) ;
3.

Using "& (variables"
, scanner stores the input

J

return 0 ; in variable d

4.
The first part of the printout statement

,
which is effectively just "d = "

..

However,

it is then followed by the format specifier % d

·

This basically says that whatever is the next printout argument is expected to

Follow Yd Laka
,

be an integar) .

5.
The second part of the printout statement

,
the variable d.

-> For ex
,
if we input the num . 10

,
the expected output would be : d = 10

Where do we establish formal -> In C
, every item being printed needs a format specifier. The first argument lays out the

specifiers ? placement of every piece of data
,

& the subsequent arguments fill those gaps in
,
left-

to-right . EX on next page ->

Printf("d +d = [dIn"
,

2
,

3
,
51 ;

· 3 spots that will be consecutively filled
,

such that the statement

prints 2 + 3 = 5

How do input/output functions
-> Everything that gets printed to the console is a string ! So when you printf an

work
,
at the compiler level ? int

,
it gets converted to a string

-> Similarly ,
scanf reads all inputs as strings and converts them to the data type

indicated by the format specifier.
- Built-in Data Types-

-> What are C's built-in I type & Storage Size
I

Value Range I

data types ? char
1 by te - 128 to 127880 to 253

(system dependent)

signed char
I by te - 128 to 127

int ↓ bytes
-2187683688 to 2

,
157

,883347

unsigned int & bytes 0 to &
,
294

,
967

,
295

Short 2 bytes
-32

,
768 to 32

,
767↑

unsigned char I
1 byte I

0 to 255

unsigned short 2 bytes 0 to 65
,
535

long 8 bytes too
many digits to write sorry

unsigned long 8 bytes
too

many digits to write sorry

double ② bytes 2. 3e-308 to 1
.
7 e + 308

What do signed" and -> if a data type is unsigned ,
then the range of values belonging to it is

"unsigned" mean ? either 8 or a positive number

-> if a data type is signed ,
it includes both negative & positive numbers

How do
you

declare -> Identical to Java !

variables in C ? -> without initialization :

int a

-> with initialization :

inta = 10 ;

When should we declare -> In C
,

we should generally always initialize when possible ,
rather

With us without initialization? than assuming that the variable is equal to zero

· that is often the case
,

but not always ... So can't count on it.

· the variable who initialization is initialized to whatever was leftover

in memory
What is variablescope ? -> the block/the region in the

program
within which we can access

a variable -

eg ,

where it is declared
,
defined

,
and used

-> Outside of this region , the variable is treated as an undeclared identifier .

I
accessible outside ofthat function .

body
What is a global variable ? -> A variable declared outside of

any function", meaning they can then be

accessed and used by all functions in the program.

What is a local variable ? -> A variable declared inside a function body ,
that is not defined or

-> Since the outside of the function doesn't even recognize the local variables
,

they can share the same name as global variables or other

functions' local variables
.

-> Additionally
, variables inside for-loops are limited in scope to just the loop.

-> Lets look at this example :

When several variables with
unsigned int num = 10 ;

a global variable

the same name are involved, int main() [

which one does the computer unsigned int num = 5 ;
a local variable

use ?
printf ("x = YdIn"

,
x) ;

d .

for (unsigned int num = 0 ; numc2 ; num ++)E a variable local to the

3↑ 3

printf("x = YdIn"
,

x) ;
2 for-100p

printf ("x = YdIn"
,
x) ;

3

return O ;

1. will print the number 5 because whenever a local variable has the same

name as a global ,
the computer always accepts the local variable.

2.
will print O I because we are inside the scope of the for-loop.

3.
Once the for-loop ends

,

its variables are essentially "gone ." So

here
,

we will again refer to the local variable and print 5.

What is the other utility of - To denote "blocks of code" (mostly for purposes of clarity & organization
curly braces &3 in C ? -> local variables declared inside curly brackets have a scope of only

inside the brackets-just like for loops :

int main() E

unsigned int= 5 ;

E

unsigned int x = 10 ;

33

What if we want to use a global & By using the extern Keyword , which tells the computer to lookmy

variable instead of a local ? at the globally defined variable
.

unsigned intx = 10:

int main()[

operators ?

I
ot

33

addition (A + B = 30)

· the statement will thus print 10 ,
not 3 .

unsigned int x = 5

E
extern unsigned int x ; : · initializes a variable with the value of the global

printf("x = YdIn"
,
x) ; variable X

- Operators in C-

What are the arithmetic -> same as Java :

o subtraction (A-B = - 10)

· multiply (* B = 200

· / divide (B/A = 2)

% modulus operator ; remainder after dividing (30 % 10 = 0
,

30 % 12 = b)
- + + increment (A + + = 11)

--- decrement (A -- = 9)

What are the relational -> same as Java in terms of meaning :

operators ?
== = >) = 4 =

-> However
,

Unlike Java
,

the statements return a number rather than the word

"true" or "False" : 1 = true O : False

&& 11 !mmm
digit is a 0)

What are bitwise operators? -> operators that work at the bit rather than byte) level

-> performs operations on the bit-expression of a number (expressed in Os and Is)

-> Fur exi

· A = 5., expressed in bits as 00000101 B = 9
, expressed as 00001001

-> Going from left-to-right ,
it returns a 1 if the operator condition is filled,

and a 0 other wise

operator description example

& · Binary AND A & B = 0000001

· copies a bit to the result (from left to right, a 1 is copied down

if it exists in both operands down if common for both
.

Otherwise,

> >

I ·

Binary OR
A 1 B = 0000 1101I

~

· a statement with c ++
uses a in the expression ,

and then increments

·

copies a bit if itexists in

either operand

1 ·

Binary XOR

1

What are prefix & postfix -> Postfix :

increments ?
-> for a variable a = 10 ;

printf ("YdIn"
,

a + + + 1) ; will printNOT 12
... only

afterwards is the value of a changed (incremented)

-> Prefix :

· increments first
,

& then applies to expression

printf("YdIn" + + a + 1) ; will print
->

can be applied to integars as well as pointers.

What is a pro-tip with if- When possible
,
avoid nesting and use compound statements instead !:

else statements ? if (A - B) E
if (A > B && BL/E

if (B < C) [VS
... 3

... 33
compound statement

nested if-statements↑
it

/execute if true 3

While (boolean expr)[

What are the looping statements -> for-loops , while-loops
,
and do-while-loops ,

with identical syntax to

in C ? Java !

How do they work ? for (init ; boolean expr ; increment) E

Il execute if true 3

do

1 execute if true

3 While (bookan expr >

I
EX :

int addStuff (inta
,

in+ b) &

System Fundamentals in C

How do
you

write a basic -> Similar to Java
,
with the format

function in C ? return type function name (argument list) &

Il body of function 3

return a + b ; 3

-> if no return
, specify return type of "void"

What is a function prototype?
-> A statement (in a program) that basically "declares" a frection

, telling the

compiler about its function name
, parameters ,

and return type.

· similar to method declarations in interfaces in Java-just a one-line statement that

does not include a function body.

What is the purpose of function ->They inform the compiler of existing functions (without necessarily having
prototypes ? to implement them right away) ,

so that the compiler can

a recognize them if/when they are being called

b) check the function implementation to make sure it matches the specified↑
int main() &

parameters , return type ,
etc.

->

Basically
,

if we declare all of our functions with function prototypes at the top of

the program , we no longer have to worry
about implementing things in sequential order

(because the compiler is already made aware of them1.

Example to use a function prototype? # includestdio . ha

int add Linta
,

in+ b) ;

printf (dIn"
,

add (2
,3)C ;

return 0 ; 3
What is the function call

-> stack frame and et
... not taking notes but see lecture video

sequence in C ? "FunctionsLall Sequence and Stack Frames"

What is a C structure ? -> It is the most basic linear structure ! (Even more than arrays or lists (

->

conceptually ,
its afable with properties ;

· table name
< names

· field names
< fieldsvalves

· Field values < fieldsvalues

-> For ex
,

Student

pid = 0000
Pid 0000

first = Jane
first Jane

last = doe

last doe

I
Char First 250] ; ·

declaring first as a character array which is

How do
you create a

-> with the struct keyword

C structure (a "Struct") ? -> Inside the struct , we initialize all of thefields-providing theirname and datatype :

struck studentEn
Fig.1

unsigned int pid ;
·ansigned int since we don't want it to be negative

Char last [50] ; effectively a string
.

char email [753 ; · by making it a char array ,
we can define first as

3 ; a string that can have up to 50 characters.

We can NOT initialize the fields (assign them values) when defining a struct ;

all we can do is declare/define them.

How can we shorten the code -> When creating the struct
, put the typedef keyword at the beginning ,

and

creating a structure ?

↓thenthethestruct
at thenhi

an alternative

unsigned int pid;

Char First[50] ;

L
-op

& connections : similar to Kuliases
3 student ;

in TypeScript (comp Seo)
- typedef is a keyword through which we can make user-defined data types

-> Using typedef to create a struct = defining your own data type !
↑ >

c Student
· pid = 12;

· sets pid to 12 forStudent

How do you use the struct ? 1. create a variable of type "struct struct name?" ;

struck student esstudent ;

Or
,
if

using typedef : Student isStudent ;

(bk our data type is now "Student")

2. Set the field values using the dot": "Operator ;

strepy (Student.
First

, "Jane") ;
object, specifically

Stropy (isStudent . last
,

"doe") ;

Strapy (esstudent. email
, " jdoeg email . edr") ;

How else can we yet a strict's -> Using an initializer list
,
where you set the values in a 23 &they are

field values ?
assigned in sequential order (the same order they were declared in the struct template) :

struct student es Student = E12
,
"jane"

,

"doe"
, "jdre demail . un

.

edu"3 ;

↳ combines steps 1 and 2

How do
you

access the field valves -> Also
using the dot operator ! format specifier for string

(like to print them) ? printf("d % Sim"
,
Studentpid ,

esstudent
.
First) ;

f
.
s

.

for int
* will print "12 jame

I

*

I
->Strapy copies the string in the second argument ,

and pastes it into the 1stargument ;

What is the "Strapy" -> When setting a field to be equal to a string ,
we cannot just instantiate a new

function ? String object like we would in Java-

"es Student
.
First = "Jane" ; "-would NOT work in C

(there's a reason for this that we will learn about later

Stucopy (isStudent
.
First

,
"Jane") ;

- Standard 3/0 : puts and gets in <stdio .
h >-

-> Note : in C
,
there is "String" data type .

Instead
, strings are declared as

character arrays (char2]) ,
where you can specify the max characters allowed.

What is the puts() frection ? - A function in the stdio . h) header library that prints strings to the

console character by character.

·

basically like printf ,
but for characters only

-> Unlike printf
, puts does not give you formatting capabilities (like w/ Formal

specifiers). The only argument it takes is an already-formatted 'string

object.
printf ("d = % dIn"

,
d) ;

-> Instead
,

it expects you to define & Formal your string however you want
,

and

THEN pass that string into puts)) .

Example using puts()? include studio
.
h >

already formatted character

int main() S↑ char sentence (50) = "glitch in the matrix In" ;
sarray

puts (sentence) ; · · passed in as an argument

return 0 ; 3

What is the gets() function ? - A function in the stdio
.h) header library that reads a string of

text from the user (input) and stores it in a pre-defined char array
object.

·

basically like scanf
,
but without any formatting

How do you use gets() ? -> Since there's no formatting ,
we have to first declare a new empty char

array (which acks as a string) ,
and set a character limit - just like with puts)

-> And then pass that empty string object into gets ((

Example using gets () ?
include Istdio

.
h)

int main()

char sentence (503 ; · initialize an empty string (char(s) object

gets (sentence) ; ·pass it into gets) argument

puts (sentence) ;

return 0 ; 3

What actually happens ↓ like with scanf))
,
the cursor waits for you/the user to type something in & then

when
you run gets c ? hit the return key.

2. Then
,

it takes the user input and stores it in the passed in char2] obj ("sentence")

as an array of characters.

What is the difference -> With gets ()
,
the user input is always stored as an

array of characters
,
no matter

between scanfll and
g what

· if user types in "10"
, the value that is stored is a string object of value "10"-

Not the number 10 ... and these are 2 very different things .

T However
,

with scanf()
,

we can use format specifiers to ask the function

to read the user input ,
and convert it to a desired data type :

Example using a toi ↑

ets() ? ↑
2

jus

gets (buffer) ;

int d = 0 ;

scanf ("Yd"
,

& d) j : · converts the input into an unsigned into

How do we convert input from ->

using the a toi () function
,

which is defined in the < Stdlib .
h > header file.

gets) into an integer ? o

Stands for "ASCII to integer" - "ASIII" represents string/char objects .

Char buffer 2253 ;

int d = atoi (buffer) ;

What is getchar () ↑ -> A function defined in the stdio . h > header file that reads user input

one character at a time

-> A Ka , after running
= get charc),

c containsay I character/the next character of user in put .

->

get charc) is typically used with a loop

What is putchar() ? ->

prints (to output) one character at a time ; every time putchar(c)

is called
,

one character will be printed.

· it takes an any of a single character.

->

putchart) is also typically used with a loop .

-

useful ?

I
a 'y' or an 'n'.

When are putchar and getchar)
- When processing single characters - for ex

,
if you're expecting the user to enter

-> As opposed to scanfl)
, gets() , printf() ,

and puts() ,
which are more useful

for processing strings.

Example using getaharc) and # include < stdio . h >

putcharc) ? main()
·

reads the first input character

int ;

c = getzhar() ; ·

characters to read-

putchar (2) I 2. prints the character just read
, C

c = get char () ;↑ While (c != EOF) E

-

a while loop that - while there are still

2. reads the next character &

33 stores it in C

What is
" EOF" ? ->

A distinctive value/piece of data-defined in stdio .h) as an int-

that is built into the getchar() function (?) such that getchar()

returns it ("EOF") when there is no more input to be read .

-> Useful for signaling when to terminate a loop (like in prev . page's example)

-> stands for "end ofFile":

Why did we declare c as an
-> RELALL : the whole point of established data types is just to categorize storage sizes .

int (in the example) ? As in
,

behind the screen
, everything is just stored as atmattern.

-> The char data type holds up to 1 byte of data (which is enough for

ASCII characters) - but not large enough to store the EOF value.

-> int data type ,
however

,
holds up to & bytes of data

, meaning it can store

integers as well as smaller pieces of data
,

like characters !

-> Since we need the argument variable for get char() (in this example "c") to be

big enough to hold EOF in addition to any possible char
,
we declare it

as an int data type instead
.

memory ?

I
memory to be used as temporary data storage where data is added or

Functions Call Sequence and Stack Frames

What is the stack in -> stack memory
is a memory usage mechanism that allows the system

removed in a last-in-first-out CLIFD) manner .

is called ?

What is a stack frame ? -

-> Every function has its own SF Leven the main()
.

What happens when a function

↑
-> A stack frame is created in the stack in main memory.

->See notes on "Program Stack" in Memory Allocation (pages 37-38)

I
with command-line interfaces (CLPs)

Connecting Programs in the Shell

What is the shell ? -> A type of computer program called a "command-line interpreter"
,

that lets Linux and Unix users control their PCs' operating systems

-> Shells allow users to communicate efficientlya directly with their

operating systems .

-> Basically ,
a comp program that exposes an operating system's services

↓o a human user
.

What is a "shell prompt" ? - The place where you type commands

-> In the terminal↑ -> Provides you with an interface to the Unix system -

-> RECALL: learneli$ is a BASH shell prompt .

What is BASH ? -> stands for "Bourne Again Stell"

-> Bash is the Unix shell we are currently using.
-> Bash is also considered a programming language when written in a script.

-> Sh File = shell scripts (written in bash)

-> BASH = the same language we learned about in "Learning a CLI"

(notespy .
3) ? Is

, grep ,
lat

,
rm

,
ata.

-> At the top of each . Sh File
, you'll see the line" ! /bir/bash"

,
which

↓ells the shell to interpret the commands as BASF commands.

How do
you n

a shell script ? - with/Pilename) .
Sh

What are the 2 "streams" ->

programs have I primary "streams" associated with them - their

in a shell ? input stream and output stream .
(where it reads input from & where

it prints it out
, respectively) .

What is the default input &
-

input :
your keyboard

output. for a

program
?

->

output : your terminal screen

-> for ex
, say that the program lower

,
when run

,
reads the user-typed

text and returns it in all lowercase

-> And
say we have a file test1

.Ext which contains the text "UNC CHAPEL HILL
"

-> if we just do learni oflower ,
the prog will wait for Dy to type something

(like AVI)
,
and then print out the line ari in the terminal.

· this is the default input & output

-> However
,

we can manually rewire these streams !

How do we rewire streams ?- Using the shell's <,7 and I operators !

What does do ?

I
-> redirects the inputstdin) of a file

,
in the format [input file]

-> learnalis . /lower < testo . Ext

(terminal) una chapel hil

· the input for the program's scant or getchar functions is redirected

to come from testo
.
Ext rather than the keyboard

·

however
,

thestdout is still the terminal screen

What does > do ? -> redirects the output (stdort) of a File
,

in the format & [output File*

-> learnalis of lower < testo
.
text > myresult .

Ext

learnalis cat my result
. Ext

une chapel hil

· the output (alr redirected to come from testo . Ext input) is now

redirected to the file myresult
.
Ext

,
rather than the terminal screen

·

cat myresult
. Ext prints the contents of that file

,
which we can see

is the same as the text that was prev printed to terminal !

What does I do ? ->

"pipe" which is used to connect 2 programs rather than I program
and1 file

[output] / [input]↑
·

effectively does the same thing as /lower <testo
. Ext

-> learneli$ cat testo . Ext 1 · /lower

una chapel hil

· this line connects the stort from the left program (cat)
,

and

plugs it in as the stain for the right program (. /lower

I
· the First element is & indexO

System Fundamentals in C : Arrays
What are the properties of -> same as Java

,
but here's a recapi

a single-dimensional array
?& contigious sequence of elements ordered by index locations

,
where

·

if the final index position is I
,
the length of the array is n-1.

-> contigious = no open spots in the
array

-> all elements in the arr have the same data type .

How do
you create an array

-> Unlike in Java
,

in a we can create an array on the stack.

in C ? < datatypesvariable name > [Size] ;
Example ? intaru][5] ; -> creates an array

that holds 5 integers
(but the ints

are not initialized to any value

-> they will just be whatever is leftover in memory ... So this isn't best

practice (RECALL "built-in data types" notes on pg .16)

intarr1 [5] = El
,
2

,
3
,

4
,
33; initialized with values

How much memory is -> simple calculation :

allocated for an array?
Nofbytes=telements laka araylength) X

memory
size of (data type)

How do we calculate the ↑ -> The C Size of (object) operator returns the size (in bytes) of the argument .

-> For ex
,

arr] allocates (Selements) x (A bytesperint) = 20 bytes of memory.

length of an
array ? unsigned int size = size of (int) mot equals&

-> Unlike in Java
,

there is no arr
. length 2) method to return the # of

elements

-> However
,

iff an

array is created on the stack (versus on the heap),

we can do a calculation to figure out the no . of elements.

lengthbytes/memorysize of data type

-> We can execute this calculation using the size of operator !

unsigned int arrlength = size of (arr1)/sizeof (int) ;
DoesC have

array bound -

Nope ! Unlike Java
,

which throws an Index Out of Bounds Exception if a

checking? user tries to access elements outside the end of an array
(RECALL COMP301)

-> The behavior is unpredictable - it
may

work (and you'll get a value that

So what happens when a user
is random/ doesn't make sense

tries to access an index out-of-bounds? -> Or
,
more likely , your program will stop ,

exit
,

and the terminal will have

a message saying "Segmentation Fault"

-> This is a

memory access violation - trying to access a restricted area

of
memory (like memory not allocated

to the array)

How do we create multi-D

I
int arr [2][3) ;

+ initializes an array of 2 "rows" & 3 "columns"

What are the properties of a
- Same as 1-dimensional ; unchecked bounds still apply !

multi-dimensional array ? -> Can have 2
,
3

,
0

,
3, ...

any dimensional array (not

just 2D)

arrays in C ? (without initialized values)

int A (2)(2) = Ed2 , 23
,
53

,
633
;
7int * 223[25 = S1

,
2

,
3 ,8 3 ;

both of these do the something ; if we don't use inner curly brockets
,

the program fills in the values by now then column

as abable ? &
What is a character array

? -> A string ! Because O has no string type
-> Unchecked bound issues still apply.

What would A look like ↑
3)

string - for the null terminator
.

What are 3 ways to declare -> in c
,

we can create a char array
& initialize it as if it were a string (like

a character array ? in Java)-as in
,

don't need to lay out each value in brackets :

2)Char Str[5] = "abad" ; vs int arr [t] = E 1
,
2

,
3

,
%3

(Java :

String Str : "abed" ; I

-> We also don't have to specify a size of the array
:

2) Char Str[J = "abad" ;

But if we do specify size
,
it must be 1 size larger than the size of the

-> We can also just initialize it normally; with brackets-but then we

to specifically add the null terminator :

Char str23) : Sla ,'b'
, 'c''d' , 10'3 ;

hull terminator

What is null termination ? -> Away to indicate where the string ends by placing
a "null terminator" as

the last element of any char array.
-> every character array must be null terminated for

your program
to work - otherwise,

we don't know where the string ends.

What is the null terminator ? -> It can be either the ASCII character for NULL
,
which is 10 ... or it can just be the

int zero
,

0 ;

Char str C33 =

Eia'b''10'3jny these I are

Charstr[3] = E'a' , 'b'
,

03 ; equivalent.

the null terminator somewhere else?

I
& or 10 are considered invalid and won't be read/printed .

What happens if you place
-> NULL termination marks the end of a string ,

so any characters beyond

char str 25] = Ela
, 'bi's''d''10"3;

Str[2] = "10' ; ·

only the characters up until Str22]

will be read .

printe (" % SIn"
,

Str) ;

"ab"

What is the <string . h) header
-> the string library in C

,
that provides many string functions.

What does theStrients -> Determines the number of characters in a char
array (up to& not including

function do ?
the nucl terminator). And returns that value as an int)

printf ("Yd In"
,

Stren (str)) ;
What does the strcpy() function

-> Copies a string !

do ?

File ? ↑ Str1yStr2 ; - DO NOT DO THIS--will carse error

-> For ex
,

in C
, you cannot set one string equal to another because they point

to diff memory addresses ;

But we can use strapy) to set one string equal to another.

&
-> Format : Strapy (< destination string) ,

<source strings S ;

char str2[] = "avi" ;

char Str29] = "rob" ;

Strapy (Stra
,
Str2) ; · · contents of str2 copied to str]

printe ("Ys In"
,

Stra) ;
* "rob"

What is a multidimensional ->

Basically a 'list' of strings ; for ex:

character array in C ? Char Str-array [3][10] ;
represents a list' of 3 strings (aka 3 rows) ,

each with a maximum length of 10 characters.

-> We can use scane to fill a multi-a char array--scanfautomatically
knows how to NULL terminate correctly.

How does scanf read in put
-> Basically ,

the user types in input it fills a row
,
character by character. When

when filling a multi-d char array ? You hit the return key ,
scanf automatically does 2 things :

1.
copies the newline char

,

In
, to the next spot in the row

2.
places the NULL terminator 10 in the spot immediately after.

I
3 ↳

format spec .

For strings !

Example of reading input Char string-arr [339107 ;
· > initializing the array

to a multidimensional char For (inti = 0 ; i < 3 ; i ++) 50 < is3 because we want to fill the array

array ? scarf ("YS"
, string-arr[i]) ;

by news (and there are brows

-> If the user input was the following :

Hello

Hi

Aloha !!!

->
Then the array in

memory would look like this :

0 2210anewline & null chars placed

D He 11 O In 10 $) Automatically
after the first

I H i In 10 # ! 1$ * #-- if there are spots remaining after↑ 2 A 1 o ha !! ! In 10
null termination

, they just get filled

N/ Whatever was leftover in memory
(its irrelevant)

Pointers

I
· I byte = 8 bits

What is the "main memory" ? -The main memory of a computer = the RAM (random access Memory
What even is memory ? ->

memory is really just a sequence of bytes

-> Each byte is given an address

What is an address ? ->

basically numbers that index the location of a byte of content - the

starting address is O and the ending address is N-I

-> Each address location stores 1 byte of data
.

-> N represents the total number of address locations
.

· similar to arrays in terms of indexing (starts at 0) & length (N-1)

main memory Address

j

2- 2

&

1056
-- 1057

1858

- 1059

How do
you know the total

↑
-> Its always a power of two --N = 2

·

N - 2
by te

N -1
by +e

*

number of address locations that · for ex
,

if N = 2" = 16
,
then the last address is going to be at 12.

exist on a computer ? -> The value of the exponent X for a given computer is actually determined by the

number of
memory addressbitsTheof binary bits that define a memory

addra

· N = 2

-> A computer with a
32-bit system - ala it has 32 bits that represent an address

Example ? ·This means that the system has room to store up to N32 address locations

in the main memory.
·

And the last address will be (N32)-1

-> Since one address loc
.

Stores I byte of data
, pieces of data/datatypes that are

So how are pieces of data 7 I byte will take
up multiple address locations !

stored in the RAM ? -> For example :

-> 1056

1057int num = 3 ; -> the size of an int is N bytes & address -

(see pg . 18 of notes
->

locations ->
~-

1858

needed to 1059

Store num I bute 11060
-> We would then be able to access the num variable at address location 1056

I
Array RAM

memory conceptually ?
· Both are ordered collections (aka sequences (

·

Both can be randomly accessed ? ?)

index number location to access an

Y memory address number to access a byte's

element in

memory
value in memory

How can we view main

↑
-> As an array data structure ! very similar.

What is a pointer ? -> A derived data type in C that stores the memory address of another variable

as its value .

-> A pointer is initialized with this syntax :

[data type of the variable it will point to]
*

[pointer variable name]

int num ; us into p;pointer that points to an in

-> Just like integers ,
chors etc

,
"pointer" is a data type and "pointers" are

variables that take up space & need to be allocated memory.
What is the storage size of a pointer ? -> In a 32-bit system : & bytes

-> In a 64-bit system : 8 bytes

How do you assign a value to -> Using the address - of operator
,

"

& "to indicate the variable it should point to :

a pointer ? int num = 3 ;

into p = & num ;
What will preturn now ? -> it will return the address of the variable (num) in memory ! Specifically the

start address (the address of theIs byte of data that the variable is taking up)

What is actually being stored
->

it is storing a memory address location itself - the address of the var it

For the variable p (in memory) ? points at

memory address

·1858

I bute 11060
·

P 1056 200
2006

2002

How can we determine the ->

By printing it out using the pointer format specifier
,

%p

address that a pointer points to ? printf (" % pln"
, p) ;

↳ this will print 1856 since it is the starting mem . address for num (not 1054
,
1039

,
ets)

What is "dereferencing"

I
-> The

process of obtaining the value that the pointer object is pointing at !

a pointer ?
·

a . K . a
.,

what actually exists at the memory address printed by

printf(" % plm"
, p) ; >output : los

How do
you dereference a

-> By putting the
*

star in front of the pointer variable name

pointer ?
· this indicates that we want the value at the address

int num = 3 ; =3

in+*
p = & num ;

printf(" % plm"
, pl ; soutput : los

printf(" % d In"
*

p) ; < output : 3

How do we change/set the -> By deferencing p laka using the *) in an equals statement :

memory

value that p points to ? *

p
= 20 ;

&
changes the value at address 1056 iprintf ("YdIn" , p) ;

↳
output : 20

·

What happens if
you directly hmmm2002

change the value of p ? Want to do that.

What happens if
you change the > The variable will still be at the same memory address

,
and the pointer will still point to it

valve of the variable that the pointer so the pointer will still be storing that variable !

points at ? int num = 3 ;

into p =& num ;

num = 30;

printf(" % din"
,
Pp) ; Soutput : 30 !

Can we set pointers equal to other -> Yes ! Then the pointers will both point to the same variable in memory

pointers ? into y = p

printf (" % P/n" ,
q) ; < output : 1056

- Arrays & Pointers -

↑

How are arrays& pointers related ? -> Arrays in C are really actually pointers !↑ -> The name of an array simply refers to the memory address of where the
array

starts.

int a 73] ;
↳

a is the same thing as&a 20

How do we create a pointer
->

Since the name of an

array is already a pointer ,
we don't need the & operator :

for an array ? into p = a ; us int num = 3 ;

intp =& num ;

I
in+

p = a : i
address

How does this look in memory ? int a 23] = [1
,
2

, 33 ; 1056 (/1057/1058/1059)

1060 (... /1063)

1068

·
2000 (1 /2003)

P 1056 2008

2008

2012

Can we figure outthe exact -> Yes ! RAM means that we have an exact calculation to do this :

address in
memory

of an element -> For
any index 17

,
the address of a [K] is :

in an array ?
a [K] =

array start address + K & Sizeof (array datatype

For ex
,#address of a [0] (or p[0]) = 1056 + 0 - (8) = 1056

address of a 22) (or p[2]) = 1036 + 29(8) = 1068

What does RAM mean in this ! It means that if we are given an array ,
& we know these 3 things ;

context ? 2. the address location of where the array starts - aka a 20]

2 . the index position of the element that we're trying to access

3.
the Size (in byses) of each element

Then we can "randomly access" any element in the
array

(and get or

set its value) by simply using the closed - form calculation described above !

What is a pointer pitfall ? - Since Chas no bounds checking , using a pointer to access elements

outside of the array will result in unpredictable behavior-

·

we could get a value that we aren't expecting
·

We could get a memory access fault(error)
,

and the program will terminate.

Example of where a pointer int a 223 = 31
,
23

will yield unpredictable behavior ? int +

p
= a ;

Printf(" % d In"
, p[2]);

unpredictable behavior.

↑
printf ("YdIn"

,
a[2]) ; &

either one of these could result in

- Functions and Pointers-

-> Pointers can be arguments in functions !

What does it mean when
you

define - this is called a "pass by reference" - we are passing
in a reference to a location

a function argument using a pointer ? in memory.

-> Rather than the actual argument value being pushedonto the Stack Frame
,

it is a memory address

that is pushed.

function args ?

I
void Swap (chara

,
charb

, unsigned int index) &

Eample of using pointers as Afrection that swaps a single character at the same specified index
,
in 2 strings a and b :

char temp-a = a [index] ;

a Lindex] = b [index] ;

How will the memory stack > First
,

here is the stack when just the mains) function exists :

look when Swap() is called? int main ()E
memory address

Mmm2 = "Jams" ;

chary [] = "Yings" ; SF

main

1008 Y(jings 10")
· ·

takes up b

bytes of space

1000 X ("jamslo") · takes 5 bytes
-> Now

,
when swapc) is called :

Swap (x
, y ,

2) ;

X

↑ ↑

3

b [index] = temp-a ;

"swap" stack

2004 b(aka1008)

main

printf("x = %S
, y = %S In"

,
x

, y) ;
SF

return 0 ;
2008 index (aka 1)

Swap

2000n00

6 SF

1008 Y(ings 10"

1000 X ("jamslo")

-> When swap1) has been executed :

=
S

, y =
sh, y, n

frame destroyed SF

main
1008 Y (jims 10" (

OUTPU1 : x = jims , y = yangs
1000 X ("Yangs 10")

-> In this example ,
we were able to pass in X and y as parameters because they are

char arrays
- and names of char

arrays are already pointers themselves !

(not arrays) ?

I
int temp-a = a [O] ;

How are pointers used as arguments
-> EXAMPLE :

a function that swaps the value of 2 integers :

For other data types void swap (inta
,
in+ b) E

a[0] = b ;
·

b = +emp - a ; 3

Why is the pointer a being -> Saying a [O] is
equivalent

to a (the dereferenced pointer)-both

RECALL : What is astrict ? -> A"Struct" is basically an object that is sort of a table of values.

used like an array? ↑
return the value of the variable stored at the pointer.

SF

How are pointers used with
-> pointers can point at typedef structs

, just like any other data type !

regard to strucks ?
->

However
,

when dereferencing a pointer to a struct
,

if you wantto dereference a

specific field of the struct (to either set or get the val) the syntax is different :

Student struct1 =
- - (initialize the struct) ; · syntax to create a pointer isthe same

Student* pointar1 =& Struct1 ;
· dereferences pointer 1 and sets the value of

the pid field of the student object, struct I
,

pointer 2 -> pid
= 15 ; to be 15.

Wor "

pointer = 13

Example of
using pointers wastruct ? typedef struct

- defines a struct named "test" which contains

into ;
a field called "d"

3 test ;

void update (test*

p ,
int data)[main

p-d = data ; 3 the
stack

so far ,00

int main() E 1000 example. d = 18

test example = 2103 ;
update (& example ,

20) ; the
stack

now :

SF

&
update

data (20)

000)
·2000

S Sain

1000 example . d =
20

I
pointerswwaeasa

↑
powerpoint

Memory Allocation

I
-> I options to create an executable :

RECALL : how is a C program
- When you compile a program Jaka a file) From the C/terminal ,

an "executable"

executed from the command line ? of
your

file is created.

2
give the executable a name when running the compiler

, using the "-o" flag :

gx-Wall myfile
.) -O hello

↳ stores the executable under the

name "hello"

↳
don't add a flag with the name

,
in which case the compiler automatically) by

default stores the executable under the name "a out"

ga-Wall myfile.

-> To run/execute the program ,
type" /executable file names

"

· /a out orhello

What happens when a program
-> The

program is assigned memory
is executed ? ->

Specifically ,
it is assigned its own-aka not shared with any other running

program in the system
- one of each of these & things :↑ 2 Program Stack

0x60000

Read & Write D
.
S. ⑤

2 Program Heap

~ Read and Write dataSegment
~ Read only data Segment

- For one program
:

Example memory Main Memory (RAM)
address

0xF0oAp

the starting & ending memory&
O XA 0000

Program Stack &
addresses for one segment

(in this case ,
the stack)

Program Heap ↳
0x10000

Read Only D
.
S. *

0x0000

2 Stack Memory
What happens when a function -> A stack frame (SF) is created

.

is called ? -> Every function has its own SF-even main (because after all
,

main() is a frection !)

-> Local variables (i
. e .

those defined inside the function) are maintained in

the SF .

What happens when a called

function returns ?
-> The function's SF is destroyed.

-
· all local variables go out of scope .

How are stack frames themselves -> By assembly code (which we will learn more about in COMP31)

managed ?
· it appears that SFs are automatically created like magic,

but they aren't.

-> Stack Frames & the variables inside them are programmed & defined at the assembly code level.

I
int main() E "add" SF :

stored here

What is a code example int add (inta
,

in+ b) E "main" SF :

to demonstrate how a function's intd = a + b ;
a

, b
, c

: all the local variables defined in main are

stack operates ? return c ;

3
· these variables "have scope to the main()"

inta = 10 ; T
a

, b
, d · when add1) is called

,
it creates its own SF !

int b = 20 ;
·

it contains & the variables passed to the

int = add (a , b) ; function as arguments , andthe local

return O; vars defined in add2)

3
·

these variables "have scope to the add1)"

·

when addd) returns
,
all of the local vars lliked /defined in it

- 3A go out of scope & can no longer be used
...

& the SF is destroyed.
· likewise for main()

-> In general ,
the read & write data segment and the read only data segment are

referred to as "static memory"
What is stored in the -> The read only D.

S
.

Stores values that can be accessed/read
,

but not changed.

"read only" data segment? 2 stores 3 types of data :

2. Machine instructions - aka
, your program/the code in your program.

2 Constant global variables

3.

String literals

What is a constant variable -> A variable whose value cannot be changed once it is initialized to some

in C ? value .

-> declared with the const Keyword.

-> const num = 3 ; in C is equivalent to static final int num = 3 ; in Java
~

What is a global variable in C ? - A variable declared outside of any frection body (even mains !
) .

What is a

string
literal ? -> A

sequence of characters enclosed in double quotation marks - like the first argument
in a printf statement that contains format specifiers & the newline character.

What is stored in the "read
->2 things :

and write" data segment ?
2.

Global variables

2.
Static variables

What is a statiovariable -> When a variable inside a frection is declared Static (with the keyword) ,
that

in C ? means we are giving it global scope (despite being inside
a function) .

memory created ?

I
OR when mainc is called.

When are variables in the static -> When
your program Starts -

i. e. When your program enters the main)

or abnormally) .

What is a code example
const double PI = 3 .

14 ;
0 >a constant

, global variable

to demonstrate how static double area = 0 ;
> a non-constant global variable

When are they destroyed ?

↑
-> When

your program completes- i.
. e., when it exits the main() (either normally

memory operates ?

int main() E

static int radius = 10 ;
: > a static variable

area = PI radius radius ;

printf(" %2 In
,
area);astring literal

return o ;

3

What would the static memory
Read Only Read and Write

of this function look like ? variables (PI
,

variables (area
,

"Y2fIn") radius)

- Heap Memory-
What is heap memory ?

->

Memory allocated using a function call during code execution (i . e .

runtime !)

· while your code is executing , you can allocate and deallocate

memory in the heap at runtime
, dynamically .

What functions can we call to -> Malloc() : ("memory allocation")
·

Allocates a specified amount (aka size in bytes)

dynamically allocate memory while of memory in the heap .

the program is running ?
-> calloc() : also performs a memory allocation

,
but initializes all of the values

of the allocated memory to zero
.

-> realloc() : Reallocates existing allocated memory
·

uses malloc 2) (in its implementation) to allocate memory
· Used when you want to change the size/amount of memory that

you initially
allocated with malloc()

.

· For EX if you originally malloc'd 20 bytes of memory
and you want

to extend it to 30 bytes... Or vice versa -you want to downsize it

bo 10 bytes .

What function do we call to
-> Freel) : deallocates (already allocated) memory .

deallocate memory ?

What header file includes these -> include Stalib . h >!

mem. allocation functions ?

I
wants to be able to return a pointer of any type (i .

e . don't have to specify

How does mallock work ? ->
malloca)'s method signature : Void

*

malloc (size-tSize][... 3

-> The parameter and when calling Malloc() is the size
,

in bytes ,

of how much

What does "void"" mean ? -> Malloa 2) has a return type of "void"
,
which is used for a function that

into or char
,
etc

... basically a "generic pointer .

"

So what does mallow) return ? -> When you call malloc) ,
the system will go to the heap area of the memory

assigned to your program and try to allocate that of bytes.

· if successful
,
it returns a pointer to the memory

address in the heap

of where the allocated memory starts
.

What exists in the -> When you first allocate (before actually putting any
data there)

, any random data

allocated memory ? (A .M .) values leftover in that spot in memory
will be in

your A .
M

. they don't
go away

.↑
memory you want to allocate.

by mallos are "freed"

· malloc() does not do initialization
.

·

Unlike calloc()
,
where all of the values in the A .

M
. are initialized to 0

.

Example using
Melloc() ? into p = (int) malloc (size of (int)) ;

· Use the size of() function to help you calculate the of bytes you want to allocate.

How does free2) work ? - method signature : void free (void* ptr) S ... 3

· void function
,

doesn't return anything.
What is the parameter any for

-> When calling free)
, pass in the pointer that points to the first memory

Freel) ! address of the memory that you want to deallocate.

· aka
,

the pointer object returned when you called mallows !

-> free() deallocates ("Frees") all of the
memory addresses associated with a

given malloc() call
.

Example using Free2) ? into p = (int) malloc (size of (int)) ;
All J bytes allocated

free(p) ; -

What should we do with our pointer
-> Best practice : Set the pointer to NULL afterwards so that later on

,

we can

var after calling freel) on it ? check/verify that the memory has been deallocated by seeing if the pointer var is null :

P = NULL ;

&arsome
rules regarding

2 :

You must free all of the memory that you aloa

· C has no background program that does "garbage collection" of detecting&freeing memory
For

you.

· Whenever
you A

.

M
. using malloc() , you must eventually also deallocate using free 2) !

2.
The Of Malloa() Calls MUST = # of free()s

.

· of mallocks < * of Free2)s => memory leak

· # of malloc()s < # of freels - double free condition

I
-> The reason that we have to free all of the memory that we allocate

What is a memory leak ?
-> memory that is allocated by your program but is no longer being used.

What happens to
your program

-> Until you freethat allocated memory ,
the program can't use/reuse that space.

when there is a memory
leak ?

->

So if
you never free A .M

., your program
will eventually run out of heap memory

space .

Whatis a double free ->

memory that is unallocated/"freed" twice.

condition ? -> Results in unpredictable behavior-likely a memory
access violation or a

Segmentation fault
.

What causes a double free condition ? -

Commonly happens when 2 pointers are assigned to the same address in memory
,

⑳ -

and then you call freek on both pointers at 2 different locations in your program.

What is the 3rd heap ruce ? ↑ 3 -

Alway~ check to see if pointer is NULL before
you

free it.

· Everytime you call free() on a pointer ,
set it to NULL after wards.

* This prevents a double free condition bla later on
, you can programmatically

check if mem has already been unallocated (if (p = = NULL) / before calling
Free 2) on a pointer.

What is a common mistake -> Returning a pointer from a function that points at a variable that

when using pointers in functions ? was created in a stack frame !! DON'T want to do this .

· Why ? Because once the function is done & returns the pointer
,

its SE gets destroyed.
· The pointer will be left pointing at a memory address for which an SF

doesn't exist (so there's nothing there) ...

& at some point later on
, another

random SF variable might occupy the same spot & basically,

the value of Op will

Leep changing
- which usually wasn't the intention .

Example of this mistake? -> See next page !

I
return & a ; 3

Example of this mistake ? Fig. 2 int
*

bad() E

inta = 10 ;

int add link x
, inty) E

return x +
y ; 3

int main() &
I .

2 .
3.

int *

p = bad() ;

intc = add (5, p);
return 0 ; 3

bad
2. At this point ,

we have a main SF that stores p ,
a pointer SF

2.
When badd) is called

,
an SF is created for it

,
and

2000 a (10)↑ memory for its loal variables is created.

N

3 maina
-> Now

, p is set to the value 2000 bin that's

the
memory address of a ("return &a ; ")

1000 P(2000)

3. When bad 2) returns
,
its SF is destroyed !

XAll variables go out of scope and can't be bad
used 2000 a (10)

maina

↑
When addd) is called

, a new SF is created in 1000 P(2000)

the same spot where badks used to be

(Because stack memory is reused after add

y(?)
SF

variables go out of scope
2000 * (5)

Now
,

p is pointing at a completely different
5 .

variable
,

X
.

If we were to print the value 3 maina

ofp right now
,

it would bethough
1000 P(2000)

we'd expect/want it to be l

What is the lesson here ? -> Do not ever return a pointer to a stack-allocated variable
.

-> Do not reference the address of a variable outside of its scope .

What is the solution/alternative -> Allocate memory to the heap rather than the stack using
to this mistake ? the malloc Keyword .

->See "revised" code on next page !

I
of Fig

,
I :

inta = (int(sizeof (ints) ; specify the type of

↓ ether version int better 2) E

S pointer that you want
a = 10 ; malloc() to return

return & a ; 3

int add link x
, inty) E

return x +
y ; 3

int main 2) E

int*p = better() ;

intc = add (5, p);

Free(p) ;
return 0 ; 3

Why is this better ? -> memory is allocated in the heap

-> Even though the variables in the SFs will go out of scope when their functions

return
, allocated heap memory will not !

Integer pointer = new Integers) ; in Java is equivalent to↑
into pointer = (int*) malloc (size of (int) ; 2.

into pointer = (int) malloc (Sizeof (int)) ; in C !

· This line returns a pointer that is pointing to an integer that is stored in

the heap .

What is the
syntax to allocate + Basic allocation of a single variable (like an int) :

memory in the heap ? int num = 12;
1 .

&

pointer = num ;
3

2.
The value that we want to allocate

2.
This line and Mallo) call does 2 things :

"
cellocates& bytes of

memory in the heap

2)
assigns the memory address of the first byte of

memory- ala a pointer - to the into pointer.

pointer now points to an address in heap memory.
3 .

Derefencing the pointer pointer in order to store the value of num
,
which is the integer

12,

in the spot of memory where pointer points.

How do
you set the values of into array

= (int) malloc (Size of (int) * 5) ;
· allocating space for 5 integers

memory allocated for an array[0] = 15 ; > RECALL : Since
array

names are inherently pointers , we can set values

array ? array
21] = 20 ;

just like we would if the array were in the stack.

How do
you allocate memory

I
typedef struct S

since the student type has

for a C-struct ? int pid ; one integer field
,
the computer

studentpointersuemosinstudiofinds.

↑
3 student ;

knows to allow on bytes in heap!

I
for exi

gce-Wall hello . - O hello (compiles hello . c and saves it to an

Command Line Arguments in C

What are command line -> values that are given after the name of a C
program when

arguments ? you run it in the command-line Shell Jaka the terminal) .

· /hello avi Kumar
these are the command-line args

-
passed to the program "hello"

Where do the command-line > They are handled by the function's main() function ! The command

arguments go ? line args are passed in as parameters to main)

> Recall the Hello
,
World

program example from Lecture I (pg .
11 notes) :

include<Stdio .
h>

*agaai
What is

arge ? ↑ return O ; 3

I

executable called "hello")

Cunfinished)

I
Machines only understand binary numbers (Os and Is

Information Encoding
What is the need for -> While humans can understand numbers and words (as strings of characters) like

information encoding ? 100 "the matrix" 3
.

18

-> For a machine to understand the number "100"
,

we need to convert it into a binary
representation. (And same for strings and etc.)

What does "encode" mean ? - To convert information into a different form or representation.

-> For computers : binary encoding !
- Encoding Positive Integer Values

What is a base-10 (decimal) -> The place value system that we use to denote numbers - it is a number with 10
-

number ? decimal digits (0123456789)

How is a base-18 number
-> Each digit is multiplied by a power of 10 to obtain the number's value.

calculated ? -> base-10 value = 10d,where d is the decimal digit and i is the digita

position
, and do is the rightmost digit in the number.

-> For example the string of digits"17583" :

10
%

(3) + 102(d) + 1025) + 103(7) + 10(2)

= 3 + 60 + 500 + 7000 + 10000 = 17
,

563 !

How do
you convert a base-2

↑
->

r=i, where n = oiis

(denotes that this is number is in base-2)

What is a base-2 (binary) number ?
-> A number comprised only with 2 binary digits - 0 and I.

-> Each digit is multiplied by a power ofI.

number into base-10 ?

- For ex
,

the binary number 011111010000
from right to left :

2"2"2"282282223222120
OI 1 1 o 1 0 0 o 0

= 0 + 1024 + 512 + 256 + 128 + 64 + 0 + 16 + 0 + 0 + 0 + 0 = 2000 !

How do
you convert a base-10 -> Just the opposite ! Lay out a grid of each base 2 multiplier and figure out how

number into base-2 ? to sum them up to the desired base-10 number.

#23/
23

/
25

/
23

/
2

/
2

,
2

(23) (23) (2%

Example ? -> Convert 73 , 0

: 68 + 8 + 1 = 73 ,
so place a "I" in each of those spots

,
and "O's

2012864321688 22
everywhere else.

112101011010/1 ...

ANS : 02002002

bit (MSB)" ?

I
- In an E-bit binary system,

for ex
,

this would be I"(bk "2" is the

What is the "least significant -> The lowest power of 2
,

aka 20

What is the "most significant -> The highest power of 2.

8 power of 2
, starting from 2 %

What is an algorithmic
-> The decimal to binary algorithm :

way to convert a number from Given a base-10 number
,

v
,

find the equivalent by by repeating
base 10 to base 2 ? the following steps until V = 0.

1. divide v by 2

2. The remainder becomes the next bit bi
3. The quotient becomes the new v

bit (LSB)" ?

↑ in the reverse order of the order you obtained the binary digits.

REMEMBER : Sincei increases from right to left
,
the answer will be

Ex ample using this
-> Convert 181,0 to base-2 :

Formula ? 181 = 90R1 + 0: 1 ANS :
=>

90/2 = 25D8 + b = 0 20110202

+3/2 = 22RI ↳2 = 2
&

22/2 = 11R8b= 0

"2 = 5R1 bj = I

5/2 = 2 R ! bg = 1

22 = 1Rg by = 0

2/2 = ORI b = 2
-

Can we use this algorithm for -> Yes ! You can convert a base-10 number into any base-

other bases as well !
·

for base-n
,
replace "divider by 2" with "divide vbyn" !

What is a base-16 -> A number that has 16 "hex digits" the numerical digits 0-9 as well as the letters

Chexadecimal) number ? A-F

-> A hex digit (or "hexit") is a group ofa binary bits
.

-> Each nex it is multiplied by a power of 16

nexit : 10 I 23656789ABCDEF

corresponding 000000010010 0011 0100 0101 0110 all 1000 1001 1010 lo11 1100 1101 Il10 III
238567891011 12 13 16 13birabigo

number ?

I
the number !

0xA9 = 19
, 3

OxTDO = TDO

What is the notation for a base-16 -> Either the a
superscript (like with other bases) or the expression "Ox" preceding

How do
you convert a

-> Basically
,

convert each hexit into its corresponding decimal digit, and

hexadecimal # into a base-10 ? then use the following Formula :

n - 2

& I'd ;,
where d is the hexit and i is the digit position .

i = 0

-> For EX : OxTDO to base - 10

20 convert each digit to its decimal equivalent (see table on previous page)

- 13470 D
, y

+ 1300, 30 , 0

28
lay them out in a grid of each base-16 multiplier & add it up . RECALL

that it goes right-to-left ,
so the rightmost hexit will have the smallest

multiplier Laka 16%↑ 7 D O 0 + 208 + 1792 = 2
,
000

, 0

162 162 150 0 (16
%

) + 13 (162) + 7(162) =

(7) (13) (0)

- Encoding Characters Using ASCII-

What is ASCII ? -> The "American Standard Code for Information Interchange
"

-> An encoding scheme - its a table you can look at online
,
like the one I used for lab]

part I (converting to lowercase)
.

How does ASCII work ? -> it has a standard format
,

where each of 128 characters is assigned to 7 bits

a
. K . a

.
a base-2 binary number of 7 digits !

(RECALL in base-2
,

each digit is a "bit")

ala 'o'h
(null terminator)

- *SCII is how we convert characters (which humans can understand) into binary
numbers (which computers can understand...

"

binary representation"

I
· Just like the table says ,

the char A is associated with the decimal 65 !

Example to understand this
-> Lets take the character uppercase a

,

A. A is represented by the 7-bit number

table ? 1000002.
We can then convert this into a base-10 # using 10d ::

2) (2%) + 0(2) + o(z) + 0(2
%) + o(2

%
) + 0(2)) + 0(24 = G

-> ASCII allows us to convert a character into a number !

How do we convert a string ->

Strings are just sequences of characters
,

so we can just concatenate (add

into binary? together) the 7-bit binary numbers for each character !

-> EX "ameya"
a + 1000001 so when we input "ameya" into the computer

,
all it really sees is

m > 100110 1000001100110/1000 10/10/100/10000010000000

e - 1000101
if the string/char array has been null terminated

y > 1011001
correctly

,

then the string will end with 70S .

a 9 1000001

What are the 2 types of ->

Fixed-length and variable - length.

character encoding? ↑
· each char is always exactly 7 bits

E

What is fixed-length -> When all symbols use the same number of bits

encoding ?
-> ASCII is an example of a fixed-length encoding technique

·

The
range of ASCII binary conversions is from 0000000, to 2111111

What is variable-length encoding? -> Where diff symbols can use different numbers of bits

->
UNICODE 8 and UNICODE 16 are examples of V-Lencoding techniques.

How do
you know which encoding

->

Fixed-length is a good choice when all the symbols have an equal probability

style to use ? of being used.

-> Variable - length is a good choice when some symbols are more likely to appear than

others.

-> compression is a good ex of when to use variable - length encoding.

What is "compression" ?
-> "Commonly occurring symbols encoded using few bits"

-> Basically like assigning fewer bits to characters that are likely to show

up more often (to save space
?)

of bits
How many bits are needed -> The of symbols in the representation = Z ...

for a fixed-length so #of bits = Flogy (* 08 symbols)7
representation ? · For ex

, we need I bit for 2 symbols ,
2 bits for I symbols,

and & bits for 10 symbols because Nog
,

(1017 = E. 3227 = &

I
Mog

,
101 = & bits.

What is meant by "bits" The number of bits needed refers to how
many binary digits are needed to

needed" ? represent I many symbols.

-> EX to represent 10 digitsO
,

1
,
2 , 3

,
0

,
5

,
6

,
7

,
8

, 93
,

we solved

· In this case
,
it is the range from 00002 to 1001 (9

, 0)
·

This makes sense
,

since we can't represent 9,0 with only
3 bits :

2"222'20

I 00 22 (8) + 0(b) + 0(z) + 1(1) = 9
-

Encoding Signed Integers

-> RECALL : signed integers = both pos · and neg. values

How is the magnitude of a
->

Using signed magnitude representation (SM) !

signed integer represented in binary
-> magnitude= whether its positive or negative

Laka to a computer) ?
-> The most significant bit (MSB) is used to represent/indicate the magnitude.

Caka
,

the first bit/digit that gets read ; the leftmost digit).↑ · if MSB = 02 ,
indicates a positive binary number

·

If MSB = 12
,

indicates a negative binary number

What is the formula for V =

(2) Ligi ,
where =value of the MSB

signed magnitude representation? (based and n = # of binary digits

Example of how it works ? -> the number 190 is represented in base-2 as 00120001

but the number
-

19 is represented as 10210002

->
This makes sensew) the Formula

, because (1)" = 1 and (-2)2 = -1 :
n - 2

FOR

(2)52b .

S = 0 and n = 8
00110001

7)2) (20(2) + 2
: (0) + 22(0) + 23(0) + 2'(1) + 25(2) + 24(0)) =

2 · (19) =4

FOR

10110001 (2)5Libi... S = 1 and n =

(- 2)2
↓

- 2
. 49 =9

notice that unlike the usual Formula
,
this summation goes only until n-2

,
not

n-1 ... meaning that the leftmost digit in a binary # isn't taken into

account
,

since it is there to represent magnitude !

What is the
range of values ->

a . K . a
.,

what is the range of decimal numbers that can be represented

with signed magnitude with a certain nure. of binary digits (when using S
.
M .) ?

representation ?
·

ANS on next
page 101

I
- (20

- 2

- 2) to (20
- 2

- 1)

-> ANS : The Range of base-10 numbers that can be represented by a

string of N bits is given by

-> For example ,
within 8 bits (aka 00000000 to 11II/III)

,
we can encode

numbers from

- (28- - 1)

-- (128 - 1)
&

What are the pros of using SM? -> It is easy to negatea compute the absolute value - all we have to do

is look at the MSB .

What are the drawbacks to
2.

Adding and subtracting becomes more complicated ,
since there areI different

using SM representation ?
"Cases" depending on the signs of the 2 addends.↑ -

127
, 0

+ o

127,0
!

· You have to implement hardware circuits to do the add as well as subtract operations.

2. There are 2 different ways of representing a base-10 zero"

000072) (2010) + 210) + 25203 = O
, 0 -

both 'O'and -0

1000
2

= (- 1)
*

(2% 0) + 2(0) + 240)) = 0
, 0

mean the same thing !

·

This is bad by it can complicate our hardware design.

When is SM representation used? Not usually used when representing signed <positives integers
> It is used when representing floating-point numbers.

What is I's Complement -> Another
way

to do "sign" representation (other than SM) .

Representation ? - Like SM
, the MSB is still used to encode the sign

(MSBO" = pos . integer
,

MSB 10 = neg , integer
-

However
,

the equation is different :

v = - -2)+2,WherethemSB
is dent is

How does the 2's complement a For ex
,

the number 11010110 ,

equation work ?
·

n =

2
·

bn
- 2

= 2

- (2) (2) + (20) + 2.(k) + 22(1) + 23(0) + 2(1) + 2(0) + 29(1)
=

- (128) + (66 + 16 + + + 2) =
- 82

->
versus the number 001010102

·

n = z - bn - 1

= 0

- (2)(0) + (23 + 23 + 22) = 0 + 52 = 52

complement ?

I
1 .

For example ,
take the number 510 , which is 02012

What is an alternative > We can use the following 2-step process to convert
any positive

way to compute the 2's binary number into its negated equivalent !

Convert every digits into its complement (its opposite - alla Is

become Os and Os become 1s

0201

1028

Do a binary addition by 12

How do you
do ·

similar to normal math in terms of carrying ,
but basically 2 + 0 = I

binary addition ? and 1 + 1 = 0 but
you "carry the 1"to the next part of the addition

01010 0251 10101001

& + 2 (no carrying) U
.
S.

↓ I or &

1

I &0 2011 02100
10101018

2010

t 1

2021

· if
you use the prev . page formula on 1011, you will see that it does

negate a negative binary #?

↑ 2.

EX

dddd

minimum base-10 # maximum base-10 #

compute to
-5 , 0

!

Can this approach bersed to-Yes ! if we apply it to -3
, 0 aka 1011

:oM -00,
= 30 !

What is the range of values -> A stringbinary num of N bits can represent this range of decimal numbers :

With 2's complement (- 2n -

2) +o (zN
- 2

- 1)

representation ? -> Similar to that of SM representation ,
except + 1 more negative number.

-> Fur ex
, when N = 8 :

Is complement
- 128 127

signed magnitude
-

127 127

Does binary addition & Subtraction -> Yes ! Except we only do addition
,

no subtraction

work with I's complement ?
·

e. g .,
instead of 5

.
0-5 , 0 ,

we'd do 5
, 0

+ - 50
-> EX - %

, (1100) + 2
, 0(0001) ... should yield

- 3
, 0

110 8

+ 000

> convert with 2's compli
- 2

* *

(2) + (20 (2) + 2, (0) + 22(1)
⑭I

=

- 23 + (1 + y) = - 8 + 3 = - 3 !!

Are there 2 zeroes inIs complement - Nope ! Unlike SM
,
there is not a pos. & neg . zero. We could check/prove this by

representation ? applying the 2-step approach to 0000100)
- it will yield 00002

Comparison of
unsigned

I
4- bit side-by-side comparison

versus signed magnitude?

What is sign-extension
? -> When you need to "extend" the size of a binary number for it to take up a certain amount of

bits of memory space.

= For example
, you can "extend" the N-bit binary number 020I

,
(5

, 0) to

00000101
,

and it will still be equal to 50 but is an 8-bit number.

How do
you sign-extend positive

"Just"pad them" with zeroes like the example above !

binary numbers ? 001000000010

integers in I's complement

↑
-> Only one Zero

Cons :

S hardware design

How do
you sign-extend negative Same concept of padding HOWEVER

, sign-extension of negative numbers

binary numbers ? only works with I's complement ,
and notSigned Magnitude :

Signed mag. 2101 = -50 122222202 = - 125,0 X

2s complement 2011 = - 3
, 0

> 11227011
=

= - 5
,0

Summary: What are the pros Pros :

and cons of Is complement ? -> Only an add operation (can't do 5 + -3) in SM)
all of these things simplify

->

sign-extension

·

More complex to negate & compute the absolute value.

Floating-point Representation

What is floating-point
-> Similar to scientific notation - 3 fields to represent a floating-point number :

representation ? (sign) (significand) x 2(exponent)
2. the sign/sign Field" : a positive or negative number

2. significand/fraction field" : a normalized fraction

3
.

exponent/"exponent field" : the position of the "floating" binary point .

What
Floating-

point representation
& IEEE ("[triplet") 750 Floating- Point Representation .

do computers use ?
->

2 formats : single precision & double precision

How does this show up in C ? Sin C
,
the float datatype follows IEEEL51 single-precision format

, and the double

data type follows the double precision format.

I
each part with a designated section of the 32 bits.

How is a number represented -> in this format
,

there are up to 32 bits available to represent a single

in IZZE 758 floating point number.

single-precision format ? (The same 3 parts described on previous page sign , significand/fraction , exponent-

S E F

wiresee
2 z 23

What is in the Sign Field ? - 2 bit Jaka I digit) to represent the sign
of the number

->Uses signed magnitude (not 2's complement!

· O = positive number

·1 =

negative number

What is in the exponent > Represented by 8 bits <up to 8 binary digits
Field ? "The exponent is "biased" by a value of 127 meaning it can represent

a 2-122 all the
way up to 212

What is in the Fraction field ? '

Represents 23 bits
, excluding

the "leading 1"
,

which is hidden/normalized.↑
V is the base-10 value

,

S is the sign field value
,

e
. g .,

for the binary #2
.

0201x25
,
the "fraction field" will only

What is the formula to convert a
contain the digits "Ol01"

...

the I preceding the decimal point is
,
like

,
assumed.

single-precision binary# into base-10? We can use the formula

v = (- 2)5X(1
. F)x2

* - 124

,
where

How do we convert a base-10 (decimal
F

is the fraction field
,

and E is the exponent field
.

number to single-precision format? Lets convert 10
. 125,0 as an example.

1 . Convert the number into binary :

& To convert decimal/fractionals into binary
,

follow a similar process as that described on pg . 26, except

multiply v by 2 insted of dividing :

0 . 125 x2 = 0 . 230 + 0 90 . 125 =
. 001

0 . 238 x 2 = 0 . 500 + p

0 .500 x 2 = 0.
000 + 1

10
. 123 = 2020 + 0 . 002 =

2020 . 001z

2. Normalize the fraction to "I
.
F" :

·

this means that we should put our num
,

in a form such that the decimal is immediately

after the first "1"
,

and then use an exponent to adjust (just like we do with normal numbers !) 1
3

in BASE-10 2020
. 002 = 2

. 020002 x2

1024567 = 1
. 025367 x103 -ur-

321

· Therefore
,

our fraction field F will be 010001 .

I
3. Calculate the exponent,

E : Use the formula v = (-1)* x (1 .
F) x2

2 - 127

to figure out what E is

SoFar
,

we have

10 . 125 = (- 1)5 x (2010002) x 23

2 - 127

comparing this expression to (-1)
*

x (1 .
F) x 2,

we know that 2328-12" so

3 = E - 127

E = 130
, 0

4.
Convert E into base - 2 :

130
. 0

= 10000020 = 20000028
2

128 68321688 22

5.
Put it all together into IEE751 single precision format

,
where

S E F

2 z 23

·

Since 10
. 125 is positive ,

we know that S = 0

·

our exponent E is 10000010

·

our fraction is 020001
,
but since F is 23 bits

,
we fill the rest of the space with

Os

How is 9 number represented

↑
& Same process as single precision , except the final number is 60

,
rather

·

10 . 125
,

in single-precision format is then

0 1000001001000200000000000000000 ANS
-

S E F

in double precision format ? than 32 bits :

S E F

wiresee
2 12 52

-> The exponent field is biased by a value of 1023 -

can represent

2-1023 up to 21023

-> TheFraction field still excludes the "leading I"
,

and contains a significant
52 bits long

.

What is signed arithmetic

I
-> A condition that occurs when I signed integers are added but the result

Integer Arithmetic Overflow

&

overflow ? is greater than the maximum numeric value that can be represented by the

number of bits

-> Or less than the min
.

Valve that can be represented.

-> RECALL :

·

"signed integer" -- the MSB (leftmost bit) indicates if the number is pos .
or neg

.

e .g.,
1011

,
would be 3 (with signed mag .)

,
not 11

·

range of base-10 values that can be represented with N bits :

-> signed magnitude : - (2N-2-1) to (2N-2-1)

- 2's complement
: (-2)N-2 to (2N

- 2
- 2)

· The max num .

you can represent with & bits in signed may ,
For ex

, is I (0111)

Examples of signed arithmetic > if we are using Is complement and N = W
,

the range
of values is

- 80 to 70

overflow ? > if we try to add 7,0 + 7
, 0 ,

we expect
18

, 0

· However
, binary addition on OI112 + 0.112 yields Ill02 ,

which is

- 20 ! its wrong.

-> -

z
10

+ 70 should be -1510

How can you detect arithmetic

↑
· When the numbers are represented in I's complement

,
its pretty easy to detect :

· but 1000
,

+ 100 = 00012 , which is 10 !

overflow ? · if we add 2 positive integers & the result is a negative.

· if we add 2 negative integers & the result is a positive.

What is unsigned arithmetic& the same as signed arithmetic overflow
, except we only care about a result

overflow ? being greater than the maximum numeric value.

(RECALL : unsigned int -> positive values only (

> RECALL : the max base - 10 number representable by N bits is 20-1

Example ? ·
12

, 0
+ 1,0 = 00 , not 16.0 !

11002
+ 02002 = 00002

How can you detect arithmetic - if the "carry-out" bit which is the bit that gets "carried over" when you do

overflow with unsigned integers? addition is a 1
,

then overflow has occurred !

~ When you do math
,

its implied that a "D" is being carried over unless you note otherwise :

20
"carry theLo

·

288
carry the

0101 0011
⑧ 0008 2011

D"

> The "carry out bit" which is also the MSB is the last digit that gets carried over :

2)88 0 000
2000

-100 00 11
the carry-out

0000 1016
7 bit

Integer Casting

I
~ This is the same for unsigned-signed as well.

How do
you cast a signed > Same syntax as Java--put the desired data type in parentheses :

int to an unsigned int ? int i = 10

unsigned int j= Consigned int) is

What happens when we typecast It changes the interpretation of the most significant bit ! (MSB)

between signed & unsigned ? > EX Short a = - 1 ;

unsigned Short b = Consigned short) as

Printf ("b = % uIn"
,

b) ; 7 output : 65535

~ We would expect the output to be a 2 since a = -1
,
but instead its 65533

Why did we get that output? s The 2's complement signed Short-1,0 is represented as OxFFFF, ala

11111111111111112

· (RECALL : "Ox
"

means base-16
...

OxF = 2111)

· 16 digits because a short data type is 2 bytes (16 bits)

~ When we cast this value to an unsigned short
,

the digit representation doesn't↑
20 - 1 + 2- 1 = 65533

change-but the interpretation does !

· The leftmost I no longer indicates a negative number
,

so OxFFFF is calculated

as normal (aka &2:bi

-> Since it is 16 Is in a row
,

the valve actually becomes the maximum value for a

16-bit unsigned integer :

Another example ? > signed inta = -3 ; <10112 in 2's complement

unsigned intb = Consigned int) a ; >now
,

10112 is being read as unsigned and

has a value of (20(2) + 21 (2) + 2220) + 23 (1)) = 11.0 !

~
unsigned inta = 11 ; 920112

signed int b = (signed int) a; 2011
2

in Is complement = 50

· Bottom Line :
in C

,
if the

neg integer is in Is complement , we can't use

typecasting ,
and we can't simply invert the MSB.

So how do we converta negative & If data type is a signed intvalve : Use the abs) function from the

value to a positive one ? stalib library .

~ If data type is a floating-point value : Use the Fabs() function from the

math library.

I
do the same (desired type) syntax as in Java :

- Typecasting between Integers of the same sign-
S

How do we cast up ? ~ 10 cast a number to a number data type that stores more bits
,
we

int i = -10 ;

long j = <long) i; Or

unsignedShort i = 10 ;

unsigned int j = Consigned int) i;

What happens on the
> Unsigned integers : the binary number is zero-extended

,
aka padded

computer side when we cast up
? with OS

Binary valve

unsignedShort i = 10 ;
0001010 ,pudding,as

unsigned int j = Consigned int) i; 0000000100

->

signed integers : the binary number is sign-extended by padding it on the

left side with the MSB value (of the smaller number

· This works bi the number is represented in 2's complement, not signed magnitude
base-16 value

How do we cast down ?

↑
Same syntax ;

in + i = - 10 ; FFFFFFF6

long j = <long) i; FFFFFFFFFFFFFFF6

·

RECALL that OxF = I/II
2 and Ox6 = 0ll0z ...

it just takes up less space

t write the number out in hexits .

·

Since the MSB of i is 1
,

we pad the upcasted variable with 32 "1"s .

long i = -10 ; unsigned long i = 10 ;

intj = (int) i ; unsigned int j = (unsigned int) i ;

What happens on the computer

side when we cast down ?

UNINISHED

left-shift operation ?

I
left by y bit positions

,
with the syntax

Integer Bit-Level Shift & Logic Operations

What is the bitwise ~ it shifts the bits inthe binary representation of) a number X to the

xxy
& All of X's bits are moved to the left

,
but since the length of X has

~ The bit positions on the right side that are now vacant
, get padded with Os .

-> bitwise logic shifts to the left do not preserve the signed bit
.

Example of a left shift ? * = 01100018↑
to skay the same

- the extra bits on the left side are "thrown away"

X3

·

shifting X left by 3 positions :

S·
· The 3 leftmost bits get thrown away 1
· The 3 rightmost slots get padded with OS

·

ANS : 00010000

What is the bitwise right-shift Same meaning of X and y ,
but with the syntax x >

Y

operation ? ~ the extra bits on the right side are 'thrown away
~ What we do with the empty slots on the left side depends on whether it is a

signed or unsigned integer !

What do we do if it is an
-> A logical shift : simply pad the left side with OS

EX

unsigned integer ? unsigned int x = 162 -> 10100010

X32

Printf ("YiIn",
x) ;

·

shifting X right by 2 positions :

&
thrown

padwith , 10/1/0101014 away
OS

↑ blilble
/ , 101 , /01/0

·

Output : No

What do we do if it is a
- An arithmetic shift : pad the left with the value of the original numbers

signed integer ? MSB - in o der to preserve the sign. padding with Is be

was 1 !⑪
the MSB of the 0 .g .

How can we calculate the

I
> bitwise left shift - for a base-10 value u

, performing the

base-10 value of a shifted Shift <K to manipulate the binary rep . OfI yields
integer ? the base-10 number u & 2 K

EX

int u = 5

zu
is now equal to (3) * (212 = 20 !

u2

·
bitwise rightshift-u >> k gives 74/2"J

EX

int u = 20

zu
is now equal to [03) = 12%) = 2 !

n = >3

-> remember -

logical shifts won't preserve the signed bit
,

and arithmetic

shifts will
,
but only if the # is represented in 2's complement

Why do we even care about abitwise shifts are important behind the scenes.

this ?? & For most computers/machines ,
when executing a line of code that wants to

du multiplication,
like int x = 3 ;

inty = 3
*

X ;↑
· because it is equivalent to (u + 25) - (u + 23) = u * (25 - 23)

performing a bitwise left shift with an add or subtract instruction

is usually faster than performing the "multiply" instruction to multiply numbers !

· Fur ex
,

when you write int num = u & 24
,
the computer just does

(u x() - (u <3) !

= ua 24 !

-> The compiler may read multiplication statements & then just generate this code

automatically.

- Bitwise Logic Operations-

What are bitwise logic ->
a logic operation that is performed at the bit-level ; integers are evaluated

Operations ? as their binary representations
, bit-by-bit-rather than as their entire

numeric value.

· statements with bitwise operators return a number/bitstring as a

result
, not a boolean !

intx = 5 ;

inty = T ;

(y && x) evaluates to False
,
While (y & x) evaluates to 5 !

What are the bitwise

I
-> bitwise and - A & B -> bitwise not --A

logic operators ? -> bitwise or
- A 1 B -> bitwise Xor-A "B

How do they work ? -> bitwise and : evaluating each bit in comparison, return the bit if it is the same

in both bitstrings ; otherwise ,
return a 0.

· Ex 0110100& 010010 = 0100000
,

01101001

01010 10

01000001

->
bitwise or : return a 1 if it is present in either bitstring ; otherwise

,
return a O

· Ex 0110100/010010 =

0111102
01101001

01010 10

0 1 1 1 1 1 0 I↑ -> bitwise not : return the complement of each bit .

· EX ~00000001 = 10000000

-> bitwise xor : return a 1 when either bitstring has a I but not both ;

if neither or both contains 1
,
return 0.

· Ex 0110600 060060 Foil100
,

01101001

01010 10

00111100

What are some useful applications 9 for "masking" and "clearing" groups of bits ; aka
,
if we haveon 8-bit

of the AND operation ? binary num ,
and we only care about the value of the last& bits

,
we can use &

to return a bitstring where

· the group of bits we don't care about all become O

·

the selected group is returned !

-

do this by ANDing with a bitstring that contains Os in the place of the

uncared abbits
,

andIs for the bits we care about

-For EX
,

a = 10101110 and we only want the value of last bits.

· do 10101110 & 00001111 = 00001110
- u

-
·

a = a & 0000IIII sets to 0 all but the last J bits of a

· The above ex - works because we "cleared" the first & bits

·

Since ANDing anything with O gives

And then we "masked" the last& bits

· Since ANDing any bit K with 1 gives K

I
ORing any

bit K with a O gives K.

What is a useful application of -> for "setting" a group of bits to all be equal to I
.

the or operation ? · since ORing any bit witha 1 gives I
,

and

-> for EX int a = 10101110 and we want to set the last & bits to be Is :

Loloilio I 000l-

-
What is a useful application of · a = al SETON sets to 1 the bits in X that are set to 1 in SET

_
On

·

XORing any bit K with a O gives K

·

XoRing any bit K With al gives ~k-the opposite of K

the xor application ? ↑ -> For "complementing" groups of bits
,

because

->
for EX int a = 10101110 and we want to invert the last & bits :

10101110 "00001111 = 1010000

What is the compilation system

I
-> GLC - the Env Compiler Collection

The Compilation System

We use in our programs ?

What are the 3 steps in the 1 . the compile Step : Translates a C
program into an assembly program.

program.

3 ·

the linking step : Translates a machine program into an executable program

compilation system ?

↑
2. the assemble step : Translates an assembly program to a machine or object

that you can run on your system.

⑫ina file pl . c

content type :

-ext C program (P1 . c)

↓ Compiler

-ext Assembly program (p1 .
S)

↓ Assembler

binary ObjectProgram (p1 . 0 (

↓
Linker

binary Executable Program (a . out)

What are the levels of language+ There are 3 different languages used in the compilation system ;

abstraction' ? 2. high-level language
·

the highest level of abstraction

· Syntax is closest to human language.

·

Examples of high-level programming langs
: Jura

,
Python, C

2. Assembly language
· the lowest level of abstraction

·

specific to a processor architecture (like RISC
,

CISC
,

etc.)

·

syntax is human readable
,

but in the language of the machine ; e . g.

stuff like muli $2
.

$5 . %

3. Machine language
· No abstraction and not human readable

· consists of
binary encoded instructions and data

·

Configures & controls the hardware of the computer

·

processor specific (e . g. MIPS
,
Intel

,
etc.)

The compile Step translates high-level code into assembly code.

->
The assembly step translates assembly code into machine code.

What is theassembly

I
-> consists of a set of text instructions (in assembly level language) used to

What happens at the & the role of the compiler is to translate a program to an assembly

compiler step ? program
~

Upon compilation
,
the compiler translates each line in the C program into a MIPS Instruction

using the "MIPS Instruction Set "

·

see "MIPS Cheat Sheet" on Canvas to view the instruction set
.

program ? program the processor.

-> assembly programs exist as filename)
. S text files (.

S is short for "assembly").

->

human-readable e . g. intended user is a human.

What is the GCC command to > gec-S file .. (key piece is the -S argument
run the compile step ? > GCC will take the c program and produce a

file. S Program

What happens at the assembly step
?2 The role of the assembly step is to translate an assembly program to a

machine program

What is the 'machine program ? ->

consists of a set of binary instructions that configure & control hardware.

->
exists as a filenames

. O binary object file

-> Not human-readable
,
e .g . the intended user is a hardware.

What is the GCC command ->

g(-c files (key: the --argument

to run the assembly step?
-> Occ will produce a file

.
O machine

program.

What is an instruction set

↑
> A full vocabulary that combines instructions with registers , addressing models

,
and

- MIPS Instruction Set Architecture -

architecture ? data types

> Every ISA is specific to a processor architecture

· RISC (Reduced Instruction set computer) is the processor architecture that we'll

focus on
.

What is MIPS ? <Microproccesor without Interlocked Pipeline Stages-

~ An ISA that is specific to RISC .

What is an "instruction" ? -> A primitive operation .

-> The assembly program (S file) that we derive From a
. c file during compilation

is comprised of a long list of instructions !

· Instructions specify are made up of an operation ,
and its operands

(the necessary variables to perform the operation)

What are the types of operands? -> Immediate operands -

data/ constant values

-> registers - source and destination operands

does MIPS have ?

I
· this includes arithmetic

, logic ,
shift

,
branch

,
and comparison operations.

What types of instructions = R-type : where the instruction operands are only registers

~ I-type : where the instruction operands are a combination of registers
with a constant (animmediate" operand)

· includes arithmetic
, logic ,

branch
,

and memory operations

-> J-type : only jump instructions (not covered in this course)

What does an R-type
->

EX : add

$2 , $2 , Be11

the operation the destination the source

operand operands

Sthe $ prefix denotes a register
What is a register ?

->
an operand which has to do with memory/hardware

-> MIPS defines 32 general purpose registers ,

$0 through $31
,
each of which have their

own meanings.

-> $0 is a very special register
- it is read only

,
always zero.

What does an I-type -> EX : $2
,

2

instruction look like ? ↑
1 o

↓

Compiler

3b -addi $10
,
$10 ,

2

11 1

instruction look like ?
addi$2 * ↳ source oper and which is an

↓ immediate operand
the operation

the destination source

operand operand specifying avaive of I

> I-type instruction operations have an i at the end-i
. e .

"add i
"

·
One of the operands is not a register but a piece of data (a "constant")

·

this is the one that doesn't have a $ in front of it - i
. e .

"

1
"

What is an example of the C program
mips Program

compiler step ? 1 inta = 10 ; 6
2 addi $8

,
50

,
18

(very simple example)
2 in + b = 2 : > 2 addi $9

,
50

,

2

3 in+ c = a + b + 2 ; 3a add $10
,
$8

,
$9

5) 8 represents the variable as this line says that "$8" is equal to ($0 + 10)
,

"10"

being the immediate (data) operand.

2.
$9 represents variable b; this line says that "$9" is equal to ($0 + 21 .

3. There is no MIPS Instruction that hasy source operands ,
like this line does (a

,
b

,
and c)

· R - and I-type instructions take a maximum ofI source operands .

· Therefore
, this one line of code is broken into 2 MIPS Instructions.

34 ·

Sets $10 to represent variable c
,

and to hold the value of ($8 + $9)--aka a + b !

36
says that $10-which has already been set to represent c is now equal to ($10 + 2)-- aka

the previously established value of c (from Step 3a) plus the immediate value 2.

-> Therefore
,

these 2 instructions together Set c = a + b + 2

I
> The assembler will translate each MIPS instruction (recall from notes py 66) into a

Converting MIPS Instructions into a Machine Program
~ A

. K . a
-,

what the assembly step does
.

Machine instruction
, following a specific set of "rules" that define how to

convert instructions into binary numbers.

How is a MIPS instruction
·

Every instruction converts into a 32 bit machine instruction.

converted into binary code?
c RECALL that there are 3 types of MIPS instructions : R-type , I-type,

and

· Each instruction type has a specific form at that defines which bits correspond

to what
. Specifically ,

each instruction type has its own format regarding.
· The fields of the instruction

·

The # of bits in each field

· The order (in the 32-bit string) in which the fields occur.

~ For example ,
theFirst field of

every instruction type is theopcode : The First

bits
,
which specifies the operation of the instructionn.

R-type Instructions

recall that in binary,

What is the format of an ↑

↑
the MSB is the leftmost

Field Bits bit ! The "Oth bit" is the↑
J - type

for example ,
a converted R-type instruction labeled by its parts :

R-type instruction ?
opcode 32 - 26 (first 6 bits)

rightmost one

first source register (rs) 25 - 21 (next 5)

second source register (rt) 20-16 (next 5)

destination register (rd) 15-11 (next 5)

shift amount (shamt) 10-6 (next 5)

function bits (func
S - 0 (last 6 bits)

00000001000000110001000000100010

opcode usot rd shamt func

What is the opcode for "It is always 0--aka 000000

an R-type instruction ? (The operation in the instruction Caka add
,

subtract
,

etc) is instead specified in the

function Field.

What about the othera MECALL the parts of an R-type instruction (prev . page) .
For ex,

fields ?
add $1

,
$2

,
$3

↓ ↓
Func s ut

So how do we know what

I
~ For all of the registers (rs

,
re

,
rd)

, just convert the decimal number to

binary string to actually its 5-bit binary
.

For ex

put in each field ? $8302000

s The opcode is always 000000

C For instructions that don't use every field
,

the unused fields are coded with

all 0 bits

< Finally ,

the function field contains the 6-bit binary number that

corresponds to the given operation in the MIPS instruction.

· Each operation has a corresponding 6-bit number specified by the

MIPS Instruction Set
.

View them all in the MIPS cheat sheet.

Ex ample of some r-type
Instruction Function bits

function codes ? add 100000

addu 100001

Sub 100010

and 1001 00

or 100101

an R-type instruction to

↑
addi $8

,
50

,
16

-
the 32-bit encoding of this instruction is :

Sit 101010

Example of converting 9 Let's refer to the example MIPS program
from the compilation step (previsection) :

machine code ?
add i $9

,
50

,

2
0000000100001001 01010 100000

add $10
,
$8

,
$9 op us(8) rt(9) ra(10) func(add)

↑ addi $10
,
$10

,
2

#type instructions

↑

What is the format of an
Field Bits

I-type instruction ? opcode 32 - 26 (first 6 bits)

source register (rs) 25 - 21 (next 5)

destination register (rt) I 20-16 (next 5)

immediate value 15 - 0 (last 16 bits)

opcodeRECALL :
parts of an E-type I for ex

, is immediate
instruction ?

I
add in 00 100

What is the opcode for an ~ same concept as the "function" field of an R-type ; each operation is

[type instruction ?
assigned a 6-bit binary num

.
& this

goes
in the opcode field. Some examples :

InstructionOpcodebits

and i 001100

Sit i 001018

What
goes in the rest of the <

registers (rs
,
rt) : Same process as For R-type instructions

fields ? & immediate Cake a constant value) :

just convert the decimal number to its 16-bit

binary !

instruction ? ↑
add i

I
001000

-- ↑

Example converting an I-type
addi $8

,
$0

,
10 001000000000000000000000000100

Op Us(0) rt(8) immediate (10)

~
Now, let's return to our example & translate the entire assembly program

!

MIPS Program Machine Program
addi $8

,
50

,
16 0010000000000000000000000001016

add i $9
,
50

,

2 embler 00100000000010010000000000000010

add $10
,
$8

,
$9 S

0000000100001001 001000000100000

addi $10
,
$10 ,

2 001000001000100000000000000010

step do ?

I
The Assembly Step

RECALL : What does the assembly
< Converts a text-based assembly" program (

.

S file) into a binary machine
program

.

What are the 3 types 1
. relocatable object file (. 0)

o f object files ? 2 .

executable object File (a
.

out)

3
Shared object File (. So)

... "basically a library".
What is the relocatable & The specific type of file created by the assembler !

"

Object file"for short.

object file ? · The bytes in the r. o . f. are ordered in a very specific format : "executable and

linkableFormat" (ELF)

· Each machine instruction generated by the assembler isassigned to anLF section
,

and

given a temporary memory address (if possible) .

What is "ELF" ? ↑ ~ the standard binary format for all object files created by the compilation

system , including the 3 types of object Files.

What are the different ELF · Non-inclusive list of just the sections that we will focus on :

sections ? ·

.
text section : holds the machine instructions (i . e . your program
· rodata section : holds your read-only data (such as constants)

·

.
data section : holds initialized global & Static variables

·

· symtab section : holds the name and address location of functions & global/static
variables (in a "symbol table")

·

. rel . text section : "relocation text" ; holds the relocation info for the text section .

- Used by the linker to relocate unresolved instructions & their associated

memory addresses.

·

. rel .
data section : "relocation data" ; holds the relocation info for the data section .

- Used by the linker to relocate unresolved data& their associated

memory addresses.

& Let's use the following program as an example to discuss the operations performed by the

Assembler
program

& creation of an r
.
o

.
F.:

Program p1 . c :

2
int sum (int a

,
intn) ;

int
array (2J = 32

,
23 ; Note : we are showing the C

program only for

int main() E illustrative purposes... in reality ,

these operations

intral = Sumlarray ,
2); are performed after pl . c is compiled into

return val ; a machine/assembly program , Pl . S
.

The steps discussed below concern the conversion

p1 .S p1 . 0.

first ?

Ex ?

I
ELF section :

· symtab of p1

What is a "symbol" ? ~ It
may be the name of a (2) function

,

(2) global variable
,

or (3) static variable.

· There are other types of symbols that are supported ,
but just focusing on these for now .

What does the assembler do · identifies all of the symbols in the assembly program ,
and updates the symtab

main (a function · text 3

sum la function) · text Y

array (a global variable)· data ?

& each"symbol table entry includes the symbol name
,

the Eff section it belongs↑
Symbol section Address (32-bits)

to
,

and the symbols memory address
.

·
Unknown address information (indicated by the " ?") must be resolved either

by the assembler, or later in the linking stage by the linker.

What does the assembler do ~ It then translates data defined in the assembly program
to data in the machine program,

second ? and updates the data ELF section.

What
goes

in the data ~ Each global read/write variable is assigned a memory address , starting at

section ? address 0
.

~The data section holds each of these variables & is then assigned a size (in bytes)

based on the sum of the Size of each variable it holds.

(for ex
,
if it has 3 int variables

,
the size of data Would be 12 bytes) .

- The size ofdata is fixed after the section is updated by the assembler during
this step ,

it is set to a certain size which cannot change later
.

Ex ? · data of pl

Address (base-10) global variable

0 array = 21
,
23 18 bytes)

· the total size of the data section is 8 bytes .

What does the assembler do > The assembler then translates assembly instructions (RECALL the MIPS ISA) into

third ? machine instructions
,
and updates the text section.

What goes in thetext
· A table where each entry is a 32-bit machine instructionJaka Os and 1s) that is

section ? assigned a

memory address.

· The entries each represent an assembly instruction
,

and are created /assigned mem.

addresses in the same sequential order.

& Just like the data section
,

the size (total # of bytes) in thetext section is fixed.

~ Each instruction isa bytes ,
so size oftext = (* of instructions > &) bytes

I
Address 32-bit Instruction (given here

,
for demonstration

,
as a textual description]

Ex ? · text of py

intervals of be 8 Load address of array (address O) in a register.

eachinstructioates
12 Store 2 (From line &

,

"

val = Sum Larray ,
21") in a register.

Y 16 Jump to address (?) to call the sum function.

20 Store val in a register.

What is the
" ?

"

mean ? ~ Unknown address information (indicated by
"

? "I must be resolved by the assembler or the linker.

· In this example
,
the memory address of function sum() is unknown because it came from

was imported from some other library... notice how p1 . c has a function prototype for sum,

but no function definition
.

Why is the first
memory address

· Recall that the first address in p2 . O's memory was assigned to the data section

8 ? which holds the program's Conly) global variable "array
" " The total size of array is

8 bytes (mem addresses O-7)
,

so the next available address location is 8 !

What does the assembler do The First 3 steps updating the symbol table) . Symbab) , text
,
and data sections

of space

↑
it can :

Symbol section Address (32-bits)

fourth ? were the assembler's "first pass .

"

- It now performs a "second pass" where it returns to thesymtab symbol table and

updates the address information to resolve any
" ? "

Jaka unknown addresses) that

Ex ? Updated: symtab of p1

main (a function · text z

sum la function) · text Y

⑧
array (a global variable)· data

· Before
,

the "main" symbol didn't have an address assigned to it. But now
that the

· text section is updated , the location of the 1S" instruction that takes place inside

main() is known and so the address is updated.

~ If any addresses are still Unresolved (like Sum)
,
it is now the responsibility of the linker to

relocate it in the linking step .

· The assembler was unable to locate the 1st instruction of the suml) function.

What does the assembler do
- As part of the second pass ,

the assembler will also try to update address info

fifth ? in thetext section .

· (In our example ,
there is nothing to update

What does the assembler do

I
· Finally

,

as part of the second pass , the assembler updates therel , text section.

What
goes

in the reltext9 It is a "lookup table" where the assembler adds an entry for each unresolved symbol
section ?

~ Basically ,
for each symbol from Symtab table where the memory address is unresolved,

there exists at least one instruction in the text table that "calls" that symbol

Lobviously
,

blu if it was never used then why would it even be in the program in the 1stplace

· And as

you can see in the text table
,

each instruction has an assigned memory
address.

sixth ?

↑
1st

in thetext section (which contains all of the instructions see step 31

> In therel
. text table : Fur each unresolved symbol , adds un entry containing the name

of the symbol ,
and the memory address assigned to the first instruction that "calls")

uses the symbol (indicated by a (?) in thetext table

Ex ? · rel
.
text of pl

Symbol Address (32-bits)
refers to entry intext section ;

Sum 16 See prev page

Why do we need the reltext <It is later used by the linker to efficiently update thetext section when

section ? relocation is performed.

· Functions as a sort of "lookup table" When the linker wants to resolve some symbol,

itaan refer to the table to know which address to go to
,

rather than searching

through the entiretext section for each unresolved symbol .

Summary : What are the operations Steps/operations performed by assembler

performed during the assembly step ? 1. Create a relocatable object File (p1 . 0)

2.
Identify symbols and update the symtab section

.

pass
3. Translate assembly data to machine data and update thedata

section.

4. Translate assembly instructions to machine instructions and

rpolate thetext section .

2nd
5. Back fill (if possible) address information in symtab and

pass ·text sections
.

6.
Update therel . text section and add entries for each

unresolved symbol in the text section .

s Note : all of the content in each ELF section of a r
.

O . F . is in machine language

Cakabinary code
,

Os and 1s) ...
We just used textual descriptions in the example

tables above in order to understand the processes.

I
1. the compile Step : Translates a C

program into an assembly program.

The Static Linking Step
· RECALL : the GCC compilation system has 3 steps it performs to execute our program.

W I've already learned about the compilation and assembly steps ;

2. the assemble step : Translates an assembly program
to a machine or object

program.
3.

the linking step : Translates a machine
program into an executable

program
that

you can run on your system. (from pg . 63 notes (

What is the role of the linker ? 9 To create an executable program by combining relocatable object files and /or

shared object files (e . g. libraries (

=

Converting multiple relocatable object Files (which are each created during the assembly
step by gx-C filename

. S)
, into a single executable object file.

What is the OCC command to ·

gae-static <r
. 0 . f . Filename Dr

. O . F
. File name

perform the linking step ?
~ Our example- Recall the pl . c program from the assembly step notes

, converted into an

r
.
o .

F
.

called p2 . 0 : int sum (int a
,
intn) ;

int
array (2J = 32

,
23 ;

int main() E↑
the following sum . C program : int i

,

s = 0 ;

intral = Sumlarray ,
2);

return val ; PI . C

- Notice that a function prototype is given for int sum()
,
but no definition . Imagine we have another

r . o . F
.,

Sum .
o

,
created from int sum Lintea

,
intn) S

For Li = 0 ; i < n ; i + +)S

S + = a[i] ; 3

returns ; 3 Sum . C

Ex ? : To combine Sum.o and pl . 0 into an executable program ,
we would run the command

"gee-static p2 . 0 Sum .
o "

What happens when merun this ga <

A binary executable object file that is in ELF format is created
,
with the

command ? name a out.

- binary executable object file : "executable" for short ; includes all of the data and

instructions that will be copied into
memory and ran.

I
z

Assembler (gcc -<p2 . S)
↓

g-Sum
.
s

(library)

Diagram ? Assembly Program (p1 . S) Assembly Program (Sum . s)

Object File (p1 . 0) Object File (srm . o I
Shared object file

& N W

Linker

What operations does the linking
2.

Symbol resolution

Step perform ? 2. Relocation

What happens during Symbol e For each symbol in a symtab symbol table that is undefined aka has an
Unknown

resolution ?
memory address

, indicated by ? in the extables the linker attempts to locate the

same symbol (i
.
e, the same name and same ELF section type

· To do this
,
it looks in the symtab Symbol tables of the other r

. o .
F

. s being combined.

· If the linker cannot find a match ,
then the entire linking step stops and fails with an

"undefined reference error
.
"

~ RECALL the symtab table created for ph during assembly :
Example ? ↑

array (a global variable) · data
⑧

- This is the symbol table for Sum . O :

· symtab of p1

Symbol section Address (32-bits)

main (a function · text z

sum la function) · text Y

· symtab

symbol section Address

Sum ·text O

& The linker sees that both tables have a symbol named "Sum" that is located in thetext

section (meaning that they are instructions

& It sees that the address of sum in p1 is undefined and
, based on the fact that there exists another

symbol of both the same name and type , the linker then determines that they are the same symbol !

What does the linker do with 1 Now that it knows this
,

the ? in P2'stext section can be filled with the

this information ? memory address of the "sum" function fromSum . o

~ But wait how do we get the text sections of different ro . F.s with different memory

systems ,
to reference one another ?

What happens during
~ After symbol resolution is performed,

the linker relocates (i
. e

. copies) thetext and

relocation ?
·
data sections from one or more r

.
o .

F
.

s and comprises them all into new
,
blanktext/

·data sections namely ,
those of the final executable object file !

·

Basically
,

the linker copies data and instructions from their relative address locations

in their relocatable object Files
,

to their final
,

absolute address locations in the

executable object File !

I
the same sections of the 2 . 0 .

F
.

Example of how the linker -> For gea-static p2 . 0 Sum . o

performs relocation ?
2.The linker creates a new executable object file that has an empty,text and

·
data section

.

2.
The linker "relocates" the text & data section contents of the p1 file

,
to

· After the "copy paste" is performed ,

the linker assigns each instruction

in thetext section to a new address in the e . 0 .
F

.

diff from the

one it was initially given !! (like in the p1. text table (

3.
The linker "relocates" all of the instructions in the sumertext section

to the e .
0

.
%

. 5 text section
,

and assigns all of them a new address .

· specifically
,
the addresses intext available after the ones taken up by P1

Why is relocation important ?
-> Ensures that all data & instructions copied to the e. 0 . %

.
are given a

memory
address.

Example of a Fully &After relocation
,

the e.
0 . % is "fully linked"

· text of py

Address 32-bit Instruction (given here
,
for demonstration

,
as a textual description (

8 Load address of
array (address O) in a register.

12 Store 2 (From line &
,

"

val = Sum(array ,
21") in a register.

16 Jump to address (?) to call the sum function.

20 Store val in a register.

linked e . 0 . F .? ↑
24 Store O in a register (i variable) & fort

~ Here is the text section of the e . 0 . 8
.

after the linker has performed relocation :

· text of a out

Address 32-bit Instruction (given here
,
for demonstration

,
as a textual description]

8 Load address of array (address O) in a register.
From

12 Store 2 (From line &
,

"

val = Sumlarray ,
21") in a register. pe

13 Jump to address (2) to call the Sum function .

2 Store val in a register.

28 Store O in a register (s variable

--- -----

-J Jump to address 20

Summary ?
~ The

linking step combines r. 0 . %
. s and shared object <library) Files to create an executable

object File .

· Just like the r.
o

. f.s
,

the e . 0 . f
.

is also in ELF Format ! It contains all the same sections

as those described in the "assembly step" notes.

~ The only difference is that the sections of the e . 0 .
F

.
contain machine instructions of

multiple relocatable object files .

The Loading Step

I
into a MIPS Instruction

. Produces a file
.

S assembly program.

RELAP : What has the computer
1 . Compilation Step : Human-readable &Code Jaka

your
file . program

done up to this point ? translated into assembly language code
,

where each line of a code is turned

2.

Assembly Step : Human-readable assembly code Jake file
. 3) translated into a

binary machine language program (not human readable
, just Os and Is) .

Specifically
,

produces a relocatable object file machine program

Laka File
.
0

3.

Linking Step : Combines multiple r
. o . Es (created by assembly step) as well

as shared object (library) . So Files into a single executable object
File Laka a .

out)

~ At this point a out is just a file taking up space. How do we actually run it?

What does the loading step> Loads an executable object file into memory ,
so your computer can execute the

do ? instructions and run
your program !

~
aka

,
the loading step is what occurs when you run/a out in the terminal

~ The Loading step does 2 things :↑ 2. The computer/operating system starts executing the machine instructions that

2. Copies sections in your executable object file into main memory.

are in thetext section of the e . 0 .
F.

What happens prior to the "When
you

execute your program , before the Loader can even do Step 1
,
the

loading step ? OS (operating system; aka
your computer) first assigns memory

for your program.
> The OS creates a section in main memory

for each of the following :

· User stack : created at runtime

·

Run-time heap : created by mallo

· data : contains the read/write data Segment aka the. data ELF section !

· text : contains the read-only code segment- aka thetext androdata sections !

Specifically for this one program.

How are these sections assigned? Each section is assigned
a

very specific,
fixed segment in

memory
.

i
.
e

.,
a specific

range of
memory

addresses.

What does the loader do in
-> Now that the OS has created memory

for your program ,
the loader can copy

Step 1 ? the appropriate sections in the fully linked ELF object file
,
to their assigned segments

in main memory.
Which sections of the e. 0

.
f

.

·
RECALL thatthe ELF file contains many sections : Symtab ,

text
,

data
,

rodata
,

rel . text, etc .

get copied ?

I
The loader only copies thetext

,
rodata

,
and data sections to the corresponding

segments ,
like so :

Main Memory

ELF header

0x10000

· text

·

↑
0x60008

Object File
OXFOOD

User Stack

I
~ Static library Files contain a library symbol table that lists all of the symbols defined

Static Libraries and Static Linking
What is a static library ? - Multiple related relocatable object files that are combined (specifically

concatenated) into a single File
,
called a static library (also called an archive

> static libraries exist asa Files (e .g . libca
,
which represents the standard C library

by each r
. 0 . F . S symtab section

... basically comprises them.

Where is a static library created?
By a program called the archiver

,
which exists on our Linux OS as an executable object file

named ar

What are some common static elibc a the C standard library
libraries ? · contains roughly 1

,
896 r. o . f.s ! ~4

. 6 MB archive

· includes 1/0 capabilities (e .g. printf ,
scanf)

, memory allocation (malloc
,
free

,
etc.),

signal handling , string handling (strcpy etc .)
,

date & time
,
random numbers,

integer math leg operations) ,
and more.

libm
.
a the <math library

·

contains roughly && r
. o . f . S

.
~2 MB archive↑

2 .

log , exponent , square root
,

and more
.

·

more focused on floating point math functions
, including the functions for sin

,

cus
,

tan,

How can
you view all of the r

.
0

. Fs C Use the ar-E libraryFile a I sort command in the terminal to see a sorted list of all

in a library? the ro.f.s in a particular static library
.

How is a static library created ? -EX :

say we wanted to create a libe. a library that includes 3 functions atoi
, printf, and random.

2. For every C
program that we want to combine

,
we first transform it into an r. o . f

.

Laka
,

the compile and assembly steps!

Next
,

use the archiver program to combine
every

ro . F
.

into a single archive with the

terminal command ar us libc . a atoi
. o print f . o random . o

- I ↑

desired name for the
list of all r . 0 . F . s you

library
Want to include

"The output of this command would be our static library ,
libc

. a !

How can we incrementally update 'If
you want to modify one of the programs in an already created a library ,

first (after editing
a library ? the C program) compile and assemble it again ,

to obtain your modified ro
.
F

. (- 0 file).

:
Then, we run the same ar command as above except with the rand s arguments

:

U : Tells the archiver to replace the existing file in the archive with the updated one. If a

file of that name doesn't already exist
, archiver adds it to the archive

.
G . K. a -

r can

also be used to add new files to a library
.

S : Tells the archiver to update the library symbol table.

the rs arguments ?

I
won't affect anything so you might as wall always add it.

Why does the example have < Basically ,

even when you are creating a new library , putting is in the
argument,

Static Linking
RECALL : What does the ~ The linking step works by taking multiple relocatable object files (which consist

linker do (summarized) ? of ELf-format tables)
,

and combining their contents into a single executable

possibly more accurate information) · The e . 0 .f
. that it creates contains atext

,
data

,

and symtab section that each

contain the consolidated contents of each r . o . F
.
s respectivetext

, symtab and

· data sections
.

(see "LinkingStep" notes for better &

↑
object File (also in ELF format)

.

· The linker resolves" ?
"

(Unknown memory addresses) in the eof's text and data

sections by looking at the symtab symbol tables of each of the r .
0 . 8

.
5

How does the linking Step > Basically the same thing ,
but with a static library !

connect a r
.
0 . F. with a static ~ Rather than linking one . o .

8. with another
,

link the r
.

0 . F
.

With a static library

library ? Jaka a shared object , a file

· Then
, the linker performs the following steps :

1. Copies the contents of the r
.

o . f
.

(s) to an e . o .
f.

2.
Attempts to fix veresolved symbols in the eofs . symtab table by searching
the library symbol table.

3.
If Found

,
it then relocates (aka copy+ paste) the instructives & data of the

relevant functions from the library to the appropriate sections (.text and datal

in the e . 0 .
f

.

What is the ga command to + If we want to link a
program

to the Standard C library (libc . c) Specifically,

perform linking with a library ? use the -static argument in the terminal command to compile your program :

gec-static -

o test] p2 . c

-S
names the eof "testI" rather than default "aort" program to compile

· This
argument tells the linker to look in the libe library to resolve the symbols

in the pz- c program .

·

When it finds the symbols ,

the linker will copy
those instructions into the eof

,

test]

> For
any other library ... idk he hasn't talked about it yet.

static libraries/linking ?

I
~

For example ,
after compiling and statically linking the pl . c program ,

we can run

~

Shared Libraries and Dynamic Linking
What are the limitations of - Large amount of duplication in the e. 0 .

f
.,

which makes it a very large file

learncli gca-static - o ptest Pl .

learneli$ 1s-1 ·
the size of the

program ,
163 bytes

,

makes sense . However
,

we can see thatputput 3) -rw-r--r--L root root 165
... p2 . c the e

. o .
F

. is almost 815K bytes !!
~ rwxr - xr-x1 root root 800856

... ptest

Why does static linking compromise 9 Because in the linking step , the linker copies all of the ELF sections

storage space efficiency?
L data

,
roduta

,
text ,

etc) from each relevant ro . F
.

in the library
,

to the

affect the execution of a

↑
the Is-I command to list all files in the and & the storage space they take up :

ELF sections of the e . 0 . f
.

~ If bug fixes need to be performed on programs in the static library ,
then each

program that uses the static library will need to perform the linking step againn ...

b symbol resolution & relocation will have to be performed again
in order to include

the latest
coding updates.

·

will have to create new e . o . f
.
s for each

program using the library
.

What is a shared library? A different type of library with which dynamic linking can be performed

· A solution to the limitations of static linking
-> shared libraries exist as So files

.

·
Like static libraries

,
shared libraries also contain a library symbol table which

lists each symbol defined by each r
.

0 . f in the library.
How does using a shared library > RECALL that when we perform the loading step C . /a . out)

,
the OS creates

↑ sections in main
memory

for your program : Stack
, heap ,

read/write data

program ?
segment ,

and read-only code segment.
~

When your program uses shared libraries
,
the OS actually creates an additional

memory segment specifically for shared libraries : the memory-mapped

region for shared libraries !

· like the other sections
,
it is also given a specific location (address range) in memory

.
Main Memory normally

Main Memory w/ a shared library
OXFOOD

OXFOOD User Stack

User Stack

0x0000

0x0000 memory-mapped region
Run-time heap

8x 60000

8x 60000 Run-time heap
~/w data segment OX A0000

Ox 100 Ou ~/w data segment
read-only data segment

Ox 100 Ou

read-only data segment

How does this shared library

I
The new memory segment that the OS creates for shared libraries

,
the

memory segment affect system/ "memory mapped region" can actually be used not only for your program,

program memory ?
but for other

programs running in the OS' main memory as well !

> The OS is smart it knows that multiple programs might need to use the

r . u .
f . s defined in a shared library .

So instead of creating a

copy
of the

creates one shared library segment that will be used by each program

running in memory
!

· As opposed to the other sections (stack
, heapets) that the OS creates,↑

r . o
.
f.s in each program's "shared library" memory segment ,

the OS

which are unique & individually created for each program.

How is this more efficient than - It saves storage space !

static linking ?
-> For Ex

, imagine we have 2 programs ,
truncator.c and hello World.

both of which use the printf() function (which is defined in the

Standard &Library)
~ If we were to statically link both

programs to the static libe. a library
,

e .g. gee-static - o -2 truncator. c and

goa-static -o hello hello World.

then the e
. 0 . f . s created for each

program ,
th and hello

,
would both contain

binary code in their data andtext sections that defines the printf() function.

(this is what results in the ep .Es being so large in data size
,
be the linker copies

over data from the static library)
-> But with dynamic linking ,

the OS only creates a single shared memory segment
that takes up a fixed amount of space and is used by all running programs.

When is the dynamic linking
& Two options : either at load-time : aka upon the program being loaded into memory ;

step performed ? this is the point where static linking is always performed

or at run-time : aka when the program/OS is
actually executing the instructions in memory.

·

Either
way

,

this decision is handled automatically by the linker
program.

GENERAL overview : How does the linker >When executing a program ,
the first time that an unresolved symbol (e .

g . a functions is called,

perform dynamic linking ?
the linker will :

O
load the relevant ro . f .

in the shared library into the shared library memory segment if

it is not already there.

2)
Then, it performs the symbol resolution & relocation steps needed for your program.

-> If the 2 steps above cannot be performed by the linker
,
then the program will terminate with

an "unresolved reference" linking error.

I
2. Obtain ther

. O . F
. For the main program by running the compile & assembly step commands :

What are all of the steps the To outline the steps ,
lets use an example where we start with the following 3 programs :

a program with dynamic linking?
them also contain functions from the Shared Standard C library (libc . so

·

main 2 . 1
: A program that calls the defined functions in multrea and addres.

gcc -s main 2 . --> output : main I .
S

computer goes through to compile

↑ 18

·

addre
. C and multree: 2 programs that define functions for vector arithmetic . Both of

gc-c maint . 5 --output :
Mainz.

2 :

Create a shared library using the gCC-shared argument ,
as well as o to

give our shared library a name :

go-shared -o librector. so addre . c Multree.

nameshared library list of all programs we want to add

3.

Linking Step :
produces a partially linked executable object File

What does 'partially linked'mean? All of the r
. 0 % s given in the linking step command are linked into one o File (because

RECALL that the linking step can combine an r
. 0 . F

.
with a library as well as with

any number of other ro.f.s . However
,

the library has not yet been linked.

What else happens during this The linker looks in the r
.

O .
F

. (s) (Mainzc . o in this example) Symbol table for

Step ? unresolved symbols to relocate.

28

Then
,
it finds these symbols in the providedShared library (. 50 file).

However
, the respective r .

o
. As in the library have not yet been loaded into memory ,

3 they don't yet have an address that the linker needs for relocation.

·

At this point ,
the linker has identified the location of the shared library

in the file system ,
even though the s . o .f. hasn't yet been loaded into main

memory .

·

So
, during execution

,
when a r - 0

.
% in the library does need to be loaded into

memory (in the shared library "memory mapping" Segment, specifically) ,
the linker

aready knows the exact location of this r
.

0 . f
. on the file system !

(back to all steps)
↑

Loading Step : The Loader will load the partially linked e . 0 . F. Created

in Step 3) into main memory .

S .

Linking part 2 Lat runtime) : While the program in the partially linkedof

is being executed,

2) if /when an unresolved symbol is identified
,
the linker will automatically go

to the file system and load the relevant ro
.
f

.
(for that unres

. Symbol) that is in

the shared library ,

into the shared library memory segment created by the OS .

2) once the ro.f.s from the library have been added to the Sh . lib . Memory segment ,
the linker

actually does perform symbol resolution and relocation with the running program !

of dynamic linking ?

I
· For each unresolved symbol in the symtab ,

it locates the relevant instructives

What does symbol resolution + RECALL: In static linking , Symbol rest reloc does the Following
:

relocation mean in the context · creates a new file
, the e . 0 . f

., that contains everything in the 0
. g. P

.
O . F.

& data in the static library ,
and copies the contents of those specifictext

anddata sections
,

into its own corresponding sections.

·

results in a fully-linked e . 0 .
F.

However
,
in dynamic linking , symbol rest reloc actually isn't performed until

runtime Jaka . /a . out)
. All that the linker does in step 3 is create a partially

linked e . 0 .
f

. which contains addresses in main memory of where to
go to

read/execute the instructions for each resolved Symbol .

Wait
,

so what exactly does the
-> Each unresolved symbol in thesyntabtable holds the location of the

partially linked e . 0 . 8
. contain ? shared library on the File system ,

so that it can be loaded into
memory

dynamically at runtime Jaka step 3) .

What is the gac command ↑ > The same command we've been using! aka g to Leof name desired file.

to perform dynamic linking
?" no "-static" argument ; dynamic linking is actually the default option for

all programs that are created by the compilation system.

Do dynamically linked e . 0 .Es
& Yes ! Look at this example of running Is-1 on the same program as before,

take up less storage space ? (pg80) except after dynamically linking it :

the prestof is much
,much much smaller

learncli ga-o ptest pl . c
- 8 Kilobytes

V
. S . &18 kilobytes !

learneli$1s-1 Why ? this e
. o .

f. is only partially linked
, so

-
unresolved Symbols in the symbol table simply

putput 3) -rw-r--r--L root root 165
... p2 . c

hold the location of the shared library
on theFilesystem... that location info

-rwxr-xr-xI Botroot 83X
.. test is what now takes up the storage space.

What does the memory-mapped
-> An example of the entire memory mapping of the dynamically linkedtestof :

region" segment look like ? 2 . 2

-

the shared 93 .

library

memory
segment ! 16 .

Y

2
the range of addresses for the "read-only data" memory segment

2.
the range of addresses for the "read/write data" memory segment

3. the rangerfaddresses for the heap memory segment
8 the range of addresses for the stack

memory segment
5. The standard Clibrary loaded up into the shared library segment ,

which holds the relevant ro .f.s

whose functions are called in p2 . c

6. The loader
program

itself
,
which needs to be in memory in order to be executed when it comes time

to dynamically perform symbol resolution & relocation (at runtime).

Header Files

I
~ A C header file : defines function prototypes , constants

,
and global variables

What is a header file ? > <stdio
. h)

,
< book .

h >, <string . h >, "bit-utils
. h" ,

etc...

header files are

very
similar to Jura interfaces (REAL 301 !)

Where are the implementations (The C code in your source file (. 21 which listed the header file.

of the functions defined in the >
The binary instructions in either

header file ? a) your program's r.
o

. F
.,

or

b) a r
.
o . F. From a static or dynamic library .

How do
you include a header file >A header file can be included in a source file in 1 of 2 different ways :

in a C program ?
· with angled brackets

,
e .g.

#includeStdio . h)

· with quotations ,
e . g.

#include "bit-utils
.

h"

What do angled brackets indicate? brackets tell the compiler to search for the indicated header file on the file system,

in a default set of directories.

What is the "default" set of -> The set of default directories is compiler-system specific .

In our case
,

for
go ,

the default

directories ? directories are: root/usr/local/include

root/usr/target/include

root/usr/include

What do quotations indicate? A include statement with quotation marks tells the compiler to instead search for the indicated

header file on the file system in a user-defined location. The header file indicated in the""

↑
·

Or
,

it can be a fully qualified file-path location starting at the root folder. For ex:

should actually be a file path location of where the compiler should look.

9 It can be a file-path which is relative to the program source files
,
for ex

#include"/ bit-utils .

h"
,
which is the same as just "bit-utils . h" Since "" indicates

the current directory (RECALL Learning a CL1)

·

Another ex: include "
. /include/ bit-utils . h"

include "/usr/local/include/bit-utils .

h
"

What is the
point of having"They are used by the compiler during the compile step.

header files ? ~ The compiler uses the function prototypes defined in the header file to verify that
your program

is syntactically correct

-> For ex
,

when
you

use functions from libraries which
you

haven't explicitly defined yourself, like

printf 2)
,
then when

you compile the program ,
the compiler uses the function

prototype in

Staio.n to verify that
you used the function correctly

-

e . g .,
number of

paramargs ,

data

types of arguments ,

etc.

& The compiler is not concerned with the implementation ofthe function ; that's the role

of the assembler and /or linker .

I
~ There are 2 types of non-volatile memory

: Secondary storage ,
and EEPROM

Hardware components in aComputing System
What is non-volatile memory? A type of computer memory that can retain stored info even after power is removed.

a Ka
, Loss of power = no loss of data.

What is secondary storage ?

The placeWhereyourcomputersfilesystemislocatedeve (HDD), or a Solid-State

disk (SDD)
,
which is newer .

-> The disk your computer has can either be internal - i. . e. local to your computer -

or

remote -
i

. e
.

in the cloud .

What is EEPROM? Electronically Erasable Programmable Read Only Memory - or ROM for short.

· read only memory
·

this storage space is typically used to store firmware that is programmed once ahead

of time.

What is volatile
memory

? ~ Where loss of power = loss of data
.

I hardware components which have Volatile
memory

:

· Registers and cache located on the Central Processing Unit (CPU)

·

Main
memory

that is not on the <pu

->

Registers,
cache

,
and main memory are all types of RAM (random access memory

What are the hardware

↑
-> Arithmetic and logic unit LALV)

cu ALL Clock

that have read-write capabilities.

What is the Central Processing & considered the "brain of the computer" and is the most important processor in a given

Unit ? computer

->

Physically ,
its a complex set of electronic circuitry

Central Processing Unit

components of a CPU ? -> Registers (which are volatile memory !

->
a Control Unit (CU) ; non-volatile

memory
Registers I/0-> Cache (Page and SRAM

,
volatile

Bus
->

Input/Output (1) capabilities Cache
-> Timing capabilities (Clock

What does the20 component
-> Allows it to read or write data onto the BUS ,

which then allows the CPU

of the CPU enable it to do ? to exchange memoryLaka read/write) with :

· The Main Memory (RAM)

·

The Secondary Storage (may be an HDD or SDD)

·

the Graphics card

·

the Network interface card

·

Otherherals on a computer such as mice
, Keyboard ,

etc.

I
-> Each hardware component has its own controller (even the CPU

,
as we saw)

What is the Control Unit ? -> Also known as the 'Controller'

->

Specifically ,

the RAM
, Secondary Storage SSD/HDD ,

and Graphics Card

all have controller components which allow them to communicate with the

CPU and send/recive/exchange data

What is the BUS ? -> Facilitates the exchange of data between all components in the computing system
(CPU

,
RAM

,
SDD

,
etc

.

)

->

Physically ,
its just a set of copper wires

·

Specifically ,
the # of copper wires = the bit size of the BUS = the bit size of

·

e . g ., on a 32-bit system , the BUS is comprised of 32 copper wires.

What are the limitations of the
->

Only one component can write data onto the BUS at a time.↑ the computer system .

disk

Bus ? · However
,

all components can read data from the BUS at
any given time.

-

Secondary Storage-
What is an HDD ? -> "Hard Drive Disk" ; One type of secondary storage seen in computer systems .

->

Physically ,

it is an electromagnetic disk which has "tracks" with sectors,

where data is stored .

·

To read or write data in that sector
,

the disk spins to the sector & moves an

"actuating arm" on top of it. electromagnetic

What are the tradeoffs to using
- Drawback : HDDs are an older storage

-

an HDD ? technology that isn't as efficient as SDDs

·

Less efficient = slower
, larger ,

consume more energy ,
etc.

·

They are no longer manufacturedI will eventually
be replaced by SDDs

-> Benefit :

very cheap
, only costs I one-hundredth of a penny

Jaka $0
.00001) for

1 GB of storage (20
,000 GB per dollar)

What is an SDD ? -> Solid-State Storage ; the other type of secondary storage

-> Much newer (and therefore Faster
,
smaller

,
more energy-efficient)

· This is the type of secondary storage used by laptops ,
tablets

,
smartphones ,

etc.

-> Physically , they are made of a flash technology memory
device that looks

like this : · These devices are nonvolatile

memory

-> Unlike HDDs
,

SSDs aren't magnetic & don't have any moving or spinning parts.

I
2. A Flash Transition Layer (FLT) that performs read

,
write

,
and erase operations

How does an SSD work ? - It has 3 major components :

2. A controller component used to communicate with other devices via the BUS

3.
A Flash Memory that is organized using blocks and pages .

·

One bod can hold
up

to 128 Ages -

·

One page
:

up to 512 kilobytes in size.

must first be erased .

Basic Design of an SSD

data stored in an SSD ? ↑
~

Major limitation of SSD memory
: When data is written to a

page ,
the entire block

How does the CPU read

Memory Hierarchy

I
b. L2 cache (SRAM)

N

storage devices

What are the 1 types of 2 . (Cpu) Registers smaller
,

faster
,

memory used in a computing
2. Cache and costlier (i .

e. per

system ? a
.

L1 Cache (SRAM byte)

3
Main Memory (DRAM) cheaper (per byte (

-.
Secondary Storage storage devices

a Local Secondary storage (local disks) &

b . Remote secondary storage (e
.g ., Web servers)↑

c . L3 cache (SRAM)
Larger ,

slower
,

and

What is the memory hierarchy ? - The order/ranking of each type of memory ,

with regards to speed,
size,

andLost .

>
Top of the Hierarchy : CPU registers

·

smallest
,

fastest
,

and most expensive

-> Bottom of the Hierarchy : Remote secondary storage

·

largest ,
slowest

,
least expensive

What are "SRAM" and
-> The 2 types of random access memory used in a computing system

"DRAM" ? -> SRAM (Static RAM) :

·

designed using
"D Flip-flop" technology (learn more in COMP311)

· includes the registers and 11
,
22

,
13 Cache memory components

-> DRAM (Dynamic RAMS :

·

designed using Transistor technology (COMP 311(

·

includes the main memory

I
-> RECALL the notes from "Pointers" :

Main Memory Addressing
What is main

memory
? -> The primary/fundamental storage space for data in devices

- ala the dynamic RAM (random access memory
-> volatile

memory
(where loss of power-loss of data

·

memory is really just a sequence of bytes (1 byte = 8 bits)
, where

How is main memory in a computing -> By pbyteis givenanaddresa tions
system organized ?

· This is distinct from virtual address locations ; However there is a relationship

between the 2
,
that is managed by your operating system.

What is a physical address? A physical address location isdefined by a binary number of length n bits.

·

For ex
,

if n = 1 then 1101
,
0000

,
0001

,
etc. are all memory address locations

on that particular OS .↑ -> One physical address location can store I byte (8 bits)

· aka
,
I address specifies the location of exactly

I byte of data.

How much main memory exists -> If n represents the "number of physical address bits" for an 0 . S
.,

then the total

on a computer ? # of unique physical memory address locations : 2

· For ex
,
if n

=N
,
there are a maximum of 20=16 unique combinations

of numbers (from 0000
,
0001

,
etc. up to 1111)

->
In bytes the total amount of main memory = (of physical address locations) x (1 byte)

·

If n = W
,

there are 16 bytes of main memory

.
What is a "word" in - A unit of data of a defined bit length used by a particular computing system.

computer architecture ? ·

Basically a
group of digits that are treated as a unit by a computer.

-> The defined bit length of a word refers to the fixed-size number of bits that

a given computer's CPU can handle/process in one go.
->

words & word size is the way
that main

memory
is aligned !

What is the Length (size

of a word ?

-> It depends on the underlying computing architecture of a computer :

· 32-bit architecture
:I word = & bytes (aka 32 bits/digits

· 60-bit architecture : 1 word = 8 bytes Jaka 64 bits/digits
What are the components of - the architecture of a computer system determines several characteristics of its components,

a 32-bit architecture like ?
including :

· the CPU will have 32-bit registers
(that can hold data & instructions (

· the 32-bit BUS will have 32 copperwires

·

the main
memory

will have physical addresses that are 32 bits (digits) long
,

& will be aligned with 4-byte words.

in a 32-bit system
?

I
-> Since1 phys ,

add. Stores I byte of data and 1 word = A bytes ,

then #

How is physical memory
-> Basically ,

all physical mem address locations are grouped into chunks of y

aligned using words addresses each
,and the computer accesses memory (in order to do actions) by these chunks !

phys . add. locations are needed to store one word.

Goes Sequentially from the first memory
address

.

i
. e

., addresses 0
,
1

,
2

,
3 will

store one word
. Addresses 1

,

5
,
6

,
7 store another word.

and end at (Hof locations aka 20) - 1.

How do we know the start -> RECALL : we access a piece of data via the pointer to its start address↑
->

· RECALL that addresses are similar to an array
data structure ; they start at

address of a word ? -> If
memory is aligned in words

,
then the start physical address of a word in

memory is always a multiple of 8-

·
e . g.,

the first word (add 0
,
123) is stored at address O

·

The next words are stored at address 1
,
8

,
12

,
and so on.

What can be stored in I we Data type amount stored inI word

Con a 32-bit systems ?
Char up to y

short up to 2

int 2

Float 2

What about 2 words ? 9 I long or I double can be stored in la minimum of) I words.

How do we read/write data that Te . g .,
a Char (1 byte) or a Short (2 bytes (

is smaller than a word (bytes)?
- Even though physical memory

is aligned in words
,

we can still read/write data that

is> word by accessing its specific address.

-> Why ? Through the hardware eaching system ,
which applies bitwise operations

(like bit shift and bit mask) on words" in order to isolate the short or char

data values.

What is
memory 'misalignment'? When a program tries to read/write data to a (start mem . address that isn't a multiple

of the word size.

· This can cause errors because the data placed at that address (which iseart of a word

but not the first address in it) will partially span across 2 words (assuming it's a

-- byte piece of datal

-> Programs that attempt to read/write data to a non-word-aligned mem
. address result

in the computer generating a BUS error and terminating the prog.

(In a 32-bit system

I
> STEPS :

Putting it all together : · EX :

Say we want to read a WORD at physical address OxA0000010 in main mem,

how do the CPU
,

BUS
,

and and then store it ine CPU register.

main memory work together ?
I we can visualize the computer with this diagram :

0x0000FF90

2 A 32-bit physical address
,
OxA0000010

,
is 0x00000

0x0000FF90

0 X A 0000010

stored in a CPU register
·

We know that this physical address is

aligned correctly bk it is a multiple of the

WORD Size ! (0x0000010 = 2
,

684
,
356

,
576)

&The CPU will write the 32-bit address stored on the register onto the BUS.

·

Why? So that the BrS can send this info to the main memory.

would need to be performed
,
which would reduce time efficiency

.
& af The main

memory (RAMI's controller reads the 32-bit physical address

key akeaway from this

↑ · The size of the BUS must be 32 bits bl otherwise
, multiple BUS operations

that is on the BUS.

b) The controller then goes to the specified phys . address in RAM
,
and reads the WORD

valve that is stored there
,

0x0000FF90
.

·

Note that while the number 0x0000010 Jaka 2
,
684

,
350

, 576) depicts a memory

address
,
the number Ox0000FF90 Caka 65

,
124) represents the actual integer

valve being stored at the specified address.

C] The controller writes 0x0000FF90 onto the BOS .

* The CPU reads the 32-bit value (0x0000FF9U) from the BUS & writes it to

a CPU register.

t & The size (i . e
.

of bits) of

example ?
·

a CPU register,
· the computer system's BOS

, and

· A
physical memory address

Are all the same ! Specifically ,
each of them is the size of a WORD.

I
managed by hardware and acts as a "fast

storage buffer" in a

Cache Memory and Principles of Locality
What is cache

memory
? -> A small amount of Static RAM (SRAM) that is automatically

computer's CPU .

-> Physically located on the <PV (unlike main memory) see diagram
on pg . 85 !

Why is cache memory
& read/write operations can be performed much faster because the CPU controller

faster than main memory ? doesn't need to go through the BUS to send/receive data (which it does

with main memory(

-> cache memory can hold/store copies of Frequently accessed blocks from

main memory.
·

makes it faster bi blocks of data don't need to be transferred to the CPU

(from main mem .) over the BUS.

What are blocks ? Summ· basically ,
a "block" = a continuous

group of data that has a fixed size

-> Not a physical partition ; a block is actually a contiguous range of

physical address locations.

How is a block placed into 1.
If the block isn't already in cache memory ,

the CPU initiates a block

Cache memory
? read operation by sending the start address of the desired block to

the RAM.

2.
The RAM controller puts a copy of the requested block on to the BUS.

3.
The CPU controller reads the BUS and puts a copy of the block into cache mem.

Cpu RAM

Controller
IU ALL Clock

Registers BUS Block 8

Cache -
&

Block 2 <copy)
Block 1

Block Z

2(copy) if
Block 3

-

Block N-1

How is a block written to
2 .

CPU controller puts a copy of the block in cache onto the BUS

main memory (from the cache) ? 2 .

RAM controller reads the block that's on the Brs
,
and replaces the

existing block in main mem . with this copy.

·

The existing data in the main mem .
block gets completely written over

partitioned into blocks ?

I
defined using n = ↓ bits

.

- Block Partitioning in Main Memory
-

How is main
memory

> Lets use a simple example of a main memory where a physical address is

· RECALL : if each address is1 digits long ,
then there are 20 = 16 total

possible address locations. And since each address stores 1 byte of data
,

we know that this entire main
memory system has 16 bytes of

storage !
-> In this example ,

lets also assume that a block size isI bytes.

What are block offset bits? The bit digits in a memory address which identify each Address (binary) Storagis
(b)

specific byte in a block. S
0000

~ In this 4-bit address example ,
the block offset bits are boththe last 2 digits of an address ; These I digits are unique

000
for every address in a block

,
for ex :

block 1 :

"byte at offset O2" 00 bloc[i8What are the tag bits ? ~ The bits that are common to each address in a block.

000 0

jod· a K . a
.,

all the bits which aren't block offset bits
,
for ex: block "

0011

How do we know the of block >It's based on the block size .

block size = 26

(EX : block size is & so 0 = 2-
offset bits (

How do we know the total # of & zm

23
,
where m = the length (* of bit digits) of a physical address

blocks in a system's memory?

(EX
: addressesare 28 total blocks in menyis

- Cache Mapping : Block Placement Algorithms -

Motivation ? ↑ · The purpose of cache memory is to store copies of blocks of data from the

main memory so that they can be efficiently accessed by the CPU to be read/

written to ... these algorithms describe methods of puttingstoring block data

in the cache memory .

What are the 3 cache mapping
2. Fully Associative

algorithms ?
2. Direct Mapping
3. Set Associative

- Fully Associative Algorithm-

What are the key concepts of
· Block data can be placed anywhere in a fully-associative cache

the Fully Associative Cache - ·FA caches are a flexible block storage strategy

mapping algorithm ? ↑ ->
When using FA cache

,
it is expensive to evict and replace a block "block

replacement" algorithm has to be implemented.

algorithm work ?

I
-> Let's use an example main memory system like the one from the prev . page,

How does the Fully Associative · Let's look at how FA performs read operations (reading data from cache)
.

where m = 4 and the block size isN bytes : Address Data (0x)

0008 Al
·

tag bits : leftmost 2 bits e .g. 0010
0001 A2

·

offset bits : rightmost 2 bits e . g. 0018 A J

How does the cache actually > 3-line Lache design : The cache has a table with o
look ? 3 lines that can be filled with storage info for a block

8,1 ,

0

By

100 C

What information does the Block offset (b)
! 10 ·
110 0

DI

D2

table contain ? line valid tag(t) 00 02 2012 is De↑ from main memory.

[

e

j

I
&

1101 DJ

1 O Our initial table for

20
the example operation

What is the valid bit ? (Indicates whether a cache line is "invalid" ; e . g .,
if the block data in that

line can be evicteda replaced with another block.

· valid bit = 0 indicates "invalid"

-> The valid bit being O also indicates whether a line in the cache is open/empty ;

that's why the valid bit for each line is initially/by default set to 0.

What is our first operation -> A load data instruction being performed by the CPU
,
where it wants to

(For the example) ? put the data currently in address OIII (in main mem .) into CPU register $8.

· We will use the FA alg.
to first load this data into cache memory ,

from which

the CPU can read it.

What steps does the FA
1 .

Searches the tagged bit field of each line in the table to see if this block

algorithm go through to do Laka block OI) is already in cache.

this ? · it's not (which is called a "cache miss")

2.
Places a copy of the specific block into any open line in the Cache Caka

any line where the valid bit is 01
.

To place the block in the table :

·

set the valid bit to 1.

·

set the tag bits to those of the specific block (in this case
,
01

· Under each offset bit
,

store (a copy of) the data value at the corresponding

address in main
memory Block offset (b)

3.
Puts the requested by te le .g . line valid tag(t) 00 02 2012

0111akaBY) into the CPU O

I
1 02 BI BI B3 BJ

register ($8) ! 10

20

What is our second operation

I
- load data instruction : put data at address 0101 in register $9

< for example) ? 1. The FA searches the tags in the table for 01 and finds it
,
and sees that

What will the algorithm it is valid (1)--aks a cache hit

do here ? · blockOI is already in cache
,

don't need to copy from main mem.

3. Puts the requested by te le .g .
OLD1 + B2) into the CPU register ($9) !

What is our third operation? -> Lets assume that atp
,

all the lines in cache are being used (valid = 1)

· CPU Load data instruction : put data at 1011 in register $8

What will the algorithm 1. Search tags for 10 -> cache miss

do here ? -> the FA then sees that the cache is Full ! No room to copy
in block 10

-> Now
,

the FA algorithm must identify an existing line of cache to evict (i . e.

invalidate) in order to then replace it with the block data from the requested

tug .

How does the FA alg decideSummwhich cache line to evict? 2. Least Recently Used (TRU) : replaces the line which has gone

unaccessed for the greatest period of time

· Favors the most recently accessed data

2 .

First in
,
First Out (FIFO) : replaces the oldest line in the cache,

regardless of whether it's recently had a cache hit.

· Also called "Least-Recently Replaced" (LRR)

3.
Random :

replaces some line at random

- Direct Mapping Algorithm
What are the key concepts of -> The line bits determine the exact location of the block data in cache

the Direct Mapping Cache-

↑
can't just be any open line like with the FA algorithm.

mapping algorithm ? ~ DM caches are a fairly rigid Storage strategy (dre to the line restrictions) ;

may result in a lot of cache misses.

-> Much simpler to evict & replace a block (due to line restrictions) -

no block

replacement algorithm is needed.

How does the Direct
· Let's look at how DM performs read operations (reading data from cache)

,

Mapping algorithm work ? using the same main memory example from the FA notes.

similar
1

-> DM also uses a eache table. However, it is a 2-line cache design (instead of 3 lines).

-> Unlike FA
,

DM alg. identifies line bits from each memory address
,
as well as tag

and offset bits.

·

tag bits : leftmost bit
,

e . g. 0010

·

line bits : 244 leftmost bit
,

e . g. 0010

· offset bits : rightmost 2 bits
,

e .g. 0010

I
~ The two-line cache design

I line valid
age opoiatable (initially empty) :

What is our first operation -> <PV Load data instruction : put data from address OIII in register $8

(for the example) ?
taybit offset is

What steps does the 1.
Goes to the line in cache defined by the line bit & checks whether the

Dm algorithm take?
requested block is already in Lache-aka

,
checks the tag bit entry for

that line (1)
.

· sees that the block isn't in cache cache miss .

8 Puts
a copy of the block (from main memory) in the cache line determined

by the line bit . Updates the valid & tag bit fields .

· A copy of block O2 added to cache at line 1 :

in Lacke ?

↑ 3 .

I 1

I

IIII ↑
line valid tag(t) 00 O2 2011

00

110 B1 B2 B3 By

Puts the requested byte 2011
,
akla B1) into register ($8)

.

What does the DM alg do whenI Laka
,

when there is a eache hit
... it does the same thing as FA alg ! See

a requested block is already "second operation" example on previous page .

What is our second operation? CPU Load data instruction : put data at address 1101 in register $9.

2. Goes to line at line bit (1) to check for requested block tag (1) -> Cache miss

·

Line 1 is currently occupied (see first operation (

2.
Evicts the block at that line& replaces it with the requested block

.

Summary : What is the idea -> Keep data that is used often in a small
,

fast SRAM : the cache.

behind cache
memory

? ·

access frequently
· already on the CPU so its fast

.

-> keep all data in a bigger but Slower DRAM : the main memory.
·

access rarely
·

BUS transfers between IPO and RAM are slower,

-> The Direct Mapping and Fully Associative cache-mapping algorithms

apply specifically to cache read operations (e .g . needing to read

data already in main mem . & add it to cache
... not necessarily

write operations .

I
load into a register by :

Cache Read/Write Operations -

RELAP : How are cache
-> Using one of 2 algorithms (FA or DM)

,
the cache responds to the CPU controller's

read operations performed ? request for a byte of data lat a specific memory address) that it would like to

·

reading a block of data from main mem .
& placing it into the Lache

-> The CPU controller then reads the specific byte from cache & places it in the register.

What is a cache write
-> When the CPU wants to write data from a Cpu register to a physical address in main mem.

operation ?
-> To do this

,
the CPU uses theFully associative (FA) cache design .

->

(Assuming the desired dest . address is already in the cache memory ,
as well as its↑

-> Most cache operations are read operations (v80 % (

corresponding block)
,
the tag & block offset bits are used to identify the

the line in cache that holds the block.

·

The CPU controller then writes the data stored in the specific register ,
to the

dest .
addresses line in cache memory

- aka
,

the CPU writes are eached.

-> After this step
,

one of 2 policies is used to complete the operation :

·

Write-through policy

·

Write-back policy
What is the write-through -> The entire block (that contains the memo add . W/ the updated data) is

policy ? immediately written to main memory

.
· i . e

.,
the old block in main mem . is replaced w/ the updated one received

fromLache .

-> DRAWBACK : updating main memory every time that data is written to the

cache is a costly operation.

· The CPU is stalled every time main-mem writing is being done

·

Reduces CPU performance bl of all the time it spends waiting / stalled.

-> BENEFIT : When write-through is used
,

the main

memory always holds the

most updated data .

What is the write-back -> The relevant block in theLache (w/the updated datal is only written

policy ? to main memory when that cache line has to be evicted & replaced by a

new block (from the Usual FA algorithm's evicting/data reading process (

-> DRAWBACK : At a given point
,

the block in cathe may be different from the

block in main
memory ; the main mem . may become "Stale" Cholding old

data values) .

-> BENEFIT : greatly improves CPU performance because eviction operations

are much less frequent.

I
store one word

.

Byte ,
Shorts

,

& Words in Cache

RECALL : What is a word ? -> A unit of data of a defined bit length (e . g.
O bytes on a 32-bit system!

-> RECALL : Since on a 32-bit system ,

I phys ,

add. Stores I byte of

data and 1 word = N bytes ,

then y phys , add locations are needed to

Why does the CPU send -> Las opposed
to just the single address byte that needs to be read/updated) .

memory in entire blocks ? -> The system would be greatly underutilized if single bytes - or basically

anything less than the word size - were transferred between main &

cache memory.

data in and out of main

↑
-> It greatly improves system performance

· This is why word alignment in main mem . is so important !

RECALL : What is the size of 1 or more words.

a block ?

Principle of Locality

SILIPPED

I
-> A heap is a complete binary tree where :

Review for Lab 6 : Heaps
What is a heap ?

->
A "partially ordered data structure"

·

Max heap : The element value of each parent mode is greater than

or equal to the element values of its children
.

· Minneap : Valve of each parent mode is less than or equal to the

element values of its children .

What is a
complete binary

-> A tree of height h (whereA singular parent mode would be h = 1 ; so

tree ? basically h = the 0 layers) is complete if :

· Levels O through h-1 are Fully occupied (e . g. every parent

mode has exactly 2 children

· There are no gaps to the left of a node in the lowest level
,

level h .

-> in the lowest level
, nodes must be filled in 6-to-R

.Som %

. a
-> Ex Incomplete Binary Trees (:: indicates missing node(s) :

g T
How are binary trees stored

- As an array ,
where the elements (at each node) are stored in the order

in a

program? visited. Specifically :

·

Top-to-bottom , Left-to-right

Example of storing a BT

-
intC] a

as an array ? ⑫ 26/12/32)8118/25
a[O] a22] a C2] a[b] a[S] @LS]

How can we calculate the array
- Given an array

int a 2) representing a Bt
,
the root node is a LO]·

index of nodes in relation to
-> Given node X = a [i] ,

each other ?
· The left child of x is at index position (2 * i) + 1

· The right child of X is at index position (2
*

c) + 2

·

The parent node of x is at index position ()i-2)/2/

How does a Min Heap work ? -> The smallest value in the list is always the root mode of the tree & should be

at index Q
.

-> The largest value could be any of the leaf nodes (nodes in lowest level) ; no

garvantee of which one it will be.

I
·

A collection of modes which together represent a sequence

Review for Lab 6 : Linked Lists

What is a Linked list ?
-> A data structure that 'stores' a list of data elements by having each

element point to the next
.

-> L . L .

S allocate mem .
For each element separately ,

and only when

necessary (as opposed to arrays which allocate entire blocks all at

once)

RECALL : What is a pointer?
-> stores a reference to another variable (its "pointee") ; or can also be set

to NULL
, indicating that it doesn't point at anything .

into p = & num ;
the memory address of num in M

.
M.↑ -> SETTING a pointer : int num = 3 ;

3
Sets the pointer var p to be equal to

-> DEREFERENCE a pointer :0 int deref = ↑p ; 09 "Mp" accesses the value

that p points to Jaka 3)

·

p
= 30 - sets the value that p points to to equal 30 (instead

of whatever it used to be)

· A pointer can only be dereferenced after its been assigned set to point to some

specific pointee .

·

A pointer wo a pointee is "bad" & shouldn't be dereferenced
.

Ishould set them to NULL instead)

-> Pointer sharing : int num = 3 ;
sets the pointers p and g to both

into p =& num ; point to the same address in memory .-
intoq = p ;

-> Pointers with C-structs :
typedef struct E

int pid ;

string name ;

3 Student ;

Student 32 = 27305
,

"ari" 3 ;
P2 is a pointer that points

to the S1 Struct
[· student' pl = & SI ;

derefences paisets the valve of s] . pid <
p1-pid = 1231 ;

equal to "1238"

I
-> Each node contains 2 Fields :

like ? block of memory called a "linked list element" or a "node"

· duta" field
,

where the actual data element is stored

· "next" field
,

which is a pointer that points to the next

node in the list (node" element = & element 1)

What do linked lists look

↑
-> allocates space for each element of the list separately ,

in its own

-> Each mode' is allocated in the heap with a Malloc() call

-> The front of the list is a pointer to the 1st mode. (not a mode itself)

-> The "next" field of the last node is NULL .

of physical memory
?

I
of available Storage (in bytes) is limited to the of physical address

Virtual Memory
- Motivation: Limitations of Physical Memory -

What are some limitations
->

Physical memoryCaka DRAM) is a fixed size resource ; the total amount

locations.

->

Basically
, physical mem . is a precious resource ble it has a fixed amount

of space that cannot be exceeded.

How is the linker limited - RECALL : The job of the linker (in summary) is to take the 0 (machine

by physical memory
? language) e

. o . F
.

ELF file and assign the text
,

data
,
etc. Sections to

addresses in physical memory .

-> LIMITATION : how does the linker know which address locations in DRAM

are vacant not being used by other programs ? How does it know where to

assign the ELF Sections of data ?

How is the loader limited Mmmmmmby physical memory ? assign a "stack" and "heap" section for the
program in main memory.

-> LIMITATION : How does the loader know which addresses in DRAM are open ,

so it

knows where to place the heap & stack data segments ?

What is the other major
-> Program sizes exceeding amt. Of available main memory .

limitation ?
· For a MM withaddress locations

,
what if the # of bytes needed by

a program (for stack
,

heap
,
shared libraries

,

shared library memory

mapping ,
text

,
data

,
other ELF sections

,
etc .) is greater than M bytes ?

·

same for with mutiple programs

What does virtual memory do ? > Resolves all the discussed restrictions of phy memory (4 more
!)

-> solves memory management problems related to :

·

program Isolation

·

program Security
-> Virtual

memory is used on all modern servers
,
laptops ,

& smartphones - it

is one of the greatest ideas/inventions in the field of computer science.

- Virtual Memory : Basic Design ,
Definition

,
& Operations -

What are the properties of -> Defined using n bits.

virtual memory?
-> Total * of Virtual address (VA) locations : "

-> UM storage size : n bytes↑
-> Virtual addresses don't physically existChence "virtual")

I
· aka

,
one singular shared VM address is used by both the linker

How are linka load operations
-> The operating system defines a common' VM address space that is used

affected by virtual memory ? by the link& load
programs

loader - the heap
,
stack

,
r-W

, Write-only ,
and shared library memory

segments will all have the same VM address location !

What is the
memory

->

Physically ,

it is a hardware component of the CPU
.

management unit ?
-> (mmu) responsible for translating a virtual address to a physical address in

-> At this point
,

when using VM
,

link& load operations pretty much become

trivial
, because these

programs require no knowledge of physical addressing or

availability in DRAM, etc.

How are VM addresses used 2 .

At runtime
,
the virtual address held in a CPU register is translated

,
at runtime,

by the system ?
by the MMU into a

corresponding physical address in DRAM. The data is then

2

sent to DRAM .

Then
,

DRAM returns the word that phys . address to the CPU
,
which then↑ DRAM.

of VPs = 2"/size of I page

stores it in the register.

So what IS virtual - Conceptually ,
VM can be thought of as an array of fixed-size blocks where

memory ? each block is a Virtual page
(VP) ,

Virtual Memory

or "page" for short
.

What is a virtual page ? -> A binary file that resides in the secondary ·storage device (like an SSD or HDD

How big is each up ? -> Size of a UP = 20 bytes up N-1

(p = # of page offset bits)

How many Ups are on a system?
-> Total # Of VPs = Zu-p - 1

size of a page = same as size of

a physical frame
(n = * of digits in a VM address)

What are the 3 states that

2

Unallocated : A
page

which hasn't yet been allocated by the UM system ; the

a VP can be in ? binary File is not yet physically on the SSD. .

The Up File hasn't been created.

2. Untached :A page
which has been allocated onto the SSD

,
but is not yet in DRAM.

3.
Cached : A page

which has been allocated space on the SSD
,

and currently also

physically exists on the DRAM (main memory) .

· A VP becomes "eached" when it is loaded into DRAM at a physical page

frame (PF) location .

·Meaning ,

the UP File on the SSD is copied & pasted into a DRAM page frame.

·

VPS can be placed into any open PF ; no restrictions on the ordering ofthem.

How are virtual
pages

I
-> In the

memory management Unit (MMU) in an array of page table

cups) organized ? entries (PTEs)
,
called a PageTable.

What is a PageTable ?
-> Maps virtual pages

(from the SSD) to physical page Frames in the

·

Every program
has its own PageTable (that gets loaded into DRAM)

·

Every entry in a PT represents a UP.

-> A
copy of the page table is also stored on the SSD as a binary file.

What is the PTE valid bit ?
-> The first bit in a PTE

. Indicates where the UP is being stored .

Page Table

·

valid = 1 means that that Up has been eached

in a page frame in DRAM. (VPOS

·

valid = 0 ; virtual
page (VP) has not been cached

.·D· NOTE: uneached Ups are still stored as binary PTE 3

Fault occurs ?

↑
DRAM .

(VDT) 2
files on the SSD ; they just aren't in main memory.

What
is an MMU "page hit" ?

-> When the UP (for the virtual address) requested by the CPU is already

eached in a page frame in DRAM Cala valid = 1)

What is an MMU "page fault" ? - When the Up for the VA requested by the CPU is not cached in DRAM Jaka

valid = 03

What happens when a page -> If there are open PFs in the DRAM : MMU caches the specified Up to an open
frame.

-> If all page frames are currently alr storing virtual pages
: An exception is raised ;

· The OS executes a "page fault" handler program which selects a Up to evict from

the DRAM .

What is swapping
? -> The process by which the page

fault handler evicts UPS From physical memory.
- EX : Virtual page "I" being evicted from physical Frame #3 in DRAM . Steps :

1)
Page Fault handler copies all of the data in the PF being cleared out (PF3)(

2)
PFH pastes this data into the UP File (in the SSD) of the Virtual Page that this

data initially came from (VPN)

3)
The data in the requested Up that will replace the one just evicted is copied from

its SSD file
,

and pasted into the now empty PF in DRAM(PF3)

-> swapping is a

veryive operation that takes a good amount of time.

What is an MMU "allocate -> When the Up for the virtual address requested by the <PV is unallocated -

meaning
page Fault" ? that the virtual

page doesn't have an existing binaryFile on the SSD.

·

An exception is raised and the US executes the page fault handler program.

How does the
page fault handler -> It creates the UPS binary file and stores it on the SSD

respond to allocate-page-faults ?

I
2-

VPN (virtual
page number) bits. - details the specific VP.

- Concepts and CalculationsFor Virtual & Physical Memory
-

What do the bits in a virtual
-> The bits in a VA are partitioned into 2 groups :

2-

memory address mean ? VPO (virtual page offset) bits .

What calculations can be -> Let the virtual address be n bits
,
and the VPO to take up pbits.

2-
formed regarding VA addresses ? The VPN is then n-p bits long.

2-
Total # of Virtual Addresses : 2"addresses

3-

Total # of entries in the Page Table (PTEs) : 20-Pentries
- -

Total * OF VPNs : 2n-p
5 .

Size of 1 page : 20 bytes.

Example? - For example ,
if each VA is 5 bits long (like 00010)

,

and there are IVPN bits
,
then

Page Table
· 23 = 8 entries in the Page table valid I VPN ~ pof

- Doo
· 32 total virtual addresses 001

·

2= 1 bytes of data per page.
. %

&
aka

, & Virtual addresses per page !
89no

-> * Of PFO bits =* Of VPO bits
11

RECALL :
How are the bitsina -> PFO (P

. Frame offset bits) and PFN (physical Frame number bits)

physical memory address divided? - Let m be the # of phys . address bits and p be the PFO bits.

Calculations ?
2.

PFN : m -p bits

2.
Total * of physical addresses : Im

3

Total # of physical memory Frames : 2m-p frames

%

Size of 1 frame : 20 bytes
-> NOTE : Size of a physical frame-size of virtual page

- Virtual to Physical Address Translation-

What is an example VA and
- Consider the ex VA above

,
With neS-bit virtual addresses

,
the VPN bits = 3

,
and

PA for a computer ?
VPO bits = 2

...
IS = 32 total addresses

-> Lets also consider that the Physical memory has m = 1 - bit physical addresses
,

PFN = 2 bits and PFO = 2 bits
...

2 : 16 total addresses

How much memory is there in this - There are 23 = virtual
pages ,

and 25= d physical pages
- the virtual

memory
example ? exceeds physical memory !

How does the OS translate a
2. The virtual address

,
which is initially held in a CPU register ,

is input into the MMU.

virtual address to a physical one?
2. When designating its physical address

,

the MMU assigns the PFO bits to be the

(not considering "swaps") same as the VA's VPO bits.

3
The MMV identifies the VA's VPN bits

,
and then refers to the Page Table to

See which Physical Frame (PFN) bits correspond to that VPN to assign them .

I
(n = 5 bits)

110 I
Main Memory/DRAM

-> General Example :

↑ MMU-created phys. I
inside the OS ?

Virtual address
address (m = 1 bits)

PEN a PFOC
...

010101 =
VPN UPO Page Table

VPN PFNI J in

- · PFN"11"

MMU
CPU

RECALL : What does an MM - Each entry contains the VPN bits
,
the PFN bits they map to

,
and a valid/present

Page Table contain ? bit that indicates whether the page is cached in DRAM (v = 2)
,
or still only on the SSD (v = 0)

Diagram of how this looks

↑
Register

2-

⑧

.....

3
.

We'll run into issues with storing the VAS.

·

After translating an address (like in diagram above)
,
the mmu

Sets the valid bit of that Pie to 1 :

-> Each
program has its own Pagetable in the MMU.

Example of address -> EX :

Programs A and B
. Initially ,

both of their PTs look like this :

↑

translation ? UPN PFN Present/valid -> RECALL that in this ex
,
there are only

000

00 · ↑ physical frames . Meanwhile
,
each program

· : has virtual pages (so 16 total ... Obviously ,

11 E

What happens if the <prrequests
-> EX : The CPU is executing instructions on program A and requests the data at VA

a virtual address from a UP that 11 000
, 11101

,
00010

,
and 0 % 11

is uncached ?
-> The VPN for VA 11000 is 110 ; the Valid bit for the UP at VPN 110 is "O" (See

table above) this is how the MMV knows that the requested address is uneached.

s ANS : The OS generates a page fault & executes the page Fault handler (PFH) program
.

What does the PFH program then -> It zopies all of the bytes that are stored in the requested UP File (which is

do ?
on the SSD) and pastes them in any open frame in DRAM.

-> After the UP has been copied into a PF
,

the PTE is updated to indicate which PF

the Up was placed in the valid bit for that PTE is then set to 1
.How does our

page table &
DRAM

DRAM look after this first
Address By te PAGE TABLE : Program A
000D f

->

UPN PFN Present/valid

example ? proo/odVPN

800
10 ↑

·
I

·Fro ·VPN 000

11 0 I

VPN 011

requests an uneached VA

I
virtual address 00100

000D

DRAM

What happens if thepr
->

Going off the same EXFrom the prev page
: now

,
the CPU is on program

B & requests

but all physical addresses are
-> VPOOl isuncached (since all VPs for

program B are

occupied ? ·exception generated. Need to add UP OUI to DRAM.

of them must be evicteda replaced with the requested page .

evict UPs from DRAM ?
-> After Swapping ,

the PFH sets the valid bit of the evicted VP's PTE back

to 0.

How does the PFH program ↑ -> With swapping ! See notes pg .
10 &

11
j

-> After swapping ,
the PFH updates the PTE for the requested VP to record

the PFN where it has just been cached
,
and toset valid = 1

DRAM
What does our MMU and

Address By te
PAGE TABLE : Program A

f

000D VPN PEN Present/valid
->

DRAM look like after this PFOO I %d = VPNOOl
10

· UPN PFN Present/valid

second example ? PAGE TABLE : Program B
f

000 D

T 00 08··· ·VPN 000

PF1)

Summary : What are some
-> Virtual addresses are associated with a program ,

rather than a hardware (as

key points about
memory opposed to PhAs

,
which are associated with DRAM)

address translations ? - Virtual addresses do not change. However
,

the physical address that they

get translated inton change ; the MMU determines this.

·

Why ? Because it depends on which physical frames are vacant .

-> The MMU is able to manage memory even if virtual memory is larger than

physical memory.

I
skipped

"exceptions"

&
ORDER Of Lectures

* cache memory stuff (skipped "principle of locality"

⑳ VM & Address Translation - unfinished

* Modes
, exceptions

,
processes

-- "Pages" are relevant

~necesses"relevant to final proj
10 Process modeling , management sched

,
context switches

· skipped "Process Management" ,
"Process Scheduling" ,

·Terminating↑ "ContextSwitching" (seems important) , and "task-street"

58 Process API

I
an OS with its "User view" - e . g. Windows

,
MaLDS

,
Linux, etc.

0.S. Introduction and Modes

What is an O . S .? -> An Operating System (OS) is a computer /computer system. We often associate

-> SSD
,

main memory , graphics cards
,

etc
. are all hardware devices that are

managed by the D . S.

What is the relationship
-> The 0

. S. itself is a software program that directly manages
both user programs

between the O. S
.,

the Le . g. Chrome
, Instagram , Spotify ,

MS Office
,
et etc) and hardware (CPU etc. ↑

hardware
,
and user programs ?

· User
programs never directly manage hardware ; the

S
Prog Prog Prog Pros

0.S . does it on their behalf. This is less efficient
software

OS

but better for security.
Hardware

What is User Mode ? -> One of the 2 modes that the Cou operates in

-> User Mode : CPU executing program instructions that do not
manage hardware

Le. g . Stuff like string processing ,
arithmetic

, accessing M. M
.

data

->

Typically ,
user programs

run in User Mode.

What if a user program tries to run
- Forex

, input/output operations , attempts to access

memory not assigned to the program ,
etc.

instructions that manage hardware ?
- ANS : The O

.S. will switch the CPU to Kernel mode.

What is Kernel mode ? -> The other mode that the CPU operates in
,

in order to execute System Calls.

What are System calls ?
- instructions that require kernel privileges on behalf of the user.

-> Forex
, power off

,
reboot

, suspend,etc... commands which get issued to

Summary : How is a user program

↑
I :

A user

program will execute instructions in an OS library (such as

hard ware devices
.

· NOTE : relates to "supervisor mode bit" assigned to a VP .

-> TheLPU never operates in both user & Kernel mode at the same time .

executed ? those in the standard clapp libraries in user mode.

2. If the CPU comes across a library instruction that
manages

hardware or accesses

data in a mem. Segment that isn't assigned to the user
,

the OS will switch

theLPU to Kernel mode
.

3.
The Kernel will then execute these "privileged instructions" on behalf of the

user
.

↑
When its done

,
the US will Switch the CPU back to user mode

,
and upU will

resume executing user program instructions.

Summary : How do the<Pu 0
.
S. Libraries : API instructions (e .g.

Prog Prog Prog Pros
↑

user

mode
libraries

modes fit into OS architecture? libc
,
libm, ...) OS & Kernel Kernel

·

O .S. Kernel :

Executes instructions
mode

N

Hardware
that

manage hardware
.

I
Kernel are mapped to the same location : The shared libraries segment

How does all of this look
- The O . S

., just like the user programs,

is a program too ! Meaning , they all

in

memory
? have their own stack

, heap , riw
,
and read-only memory segments.

-> The "memory map" segments for all user programs as well as the

in MM RECALL notes on Loading Step & shared libraries

DRAM (Main Memory
User prog 1

segments
Use-prog 2 segments

Shared Libraries

O . S. program

segments·What is CPUcontrol flow" ? -> A
program is basically just a sequence of instructions that are read from

memory & then executed by the CPU.

· Control Flow : This sequence of read/execute operations .

What happens when an
-> The CPU most alter the LPU control flow in order to handle/resolve them !

exception is generated (by the
-> For ex

,
an exception could be :

user or the system) ?
·

An instruction saying to divide a number by 0.

·

User hits Ctrl + C be they want to stop the
program

What is CPU "exceptional
-> the mechanism by which theCPV handles exceptions !

control flow" ? -> In Overview
,
if the CpU is executing instructions in user mode & comes to an

instr. that generates an exception ,
the following steps are performed :

1-
CPU switches from user to Kernel mode

.

2-
The OS transfers control to the kernel & executes an exception handler program (CHP)

3
When the EHP is finished & if the exception is recoverable

,
the OS

Switches the <PU back to user mode ; the CPU then goes to the next

instruction and resumes executing.
How

exactly does the 0 . S. - With an exception table
,
which is conceptually like an array data structure :

handle exceptions ? · The "index number" :

The unique integer that an exception gets assigned when generated
· The "element" at the index value : A memory address location (e . g . the start address *

kind of like a pointer .
)

What is stored at a given exception

-> The address points to the loc. in memory where the instructions for the exception handler

number's specified memory address ? are stored . Ala
,
a specific "exception handler program"

being handled ?

I
· A MMU "page Fault" (RECALL !!) exception is generated by theSystem .

Example of an exception -> EX : If the CPU requests a UP which isn't cached in a physical page frame.

number
,

the address in memory for the instructions for the "page Fault handler"

program are found and then executed by the system.

· The PFH
program = the EHD stored for a page

fault exception .

What is an asynchronous
-> One of the 2 types of events that can cause an exception.

event ? -> DEFN : an event external to the <PU that causes an "interrupt exception"

-> When an interrupt exception is generated ,
the interrupt pin

,
located on the CPU

,
is

What is a Trap exception ? ↑
·

When the exception occurs
,

it is added to the exception table
. Using the exception

triggered. Upon this
,
the system executes the interrupt handler program.

What are some examples ?
-> A Timer Interrupt (used for CPU context switching)
-> An 2/0 interrupt from an external device

,
e .

g . hitting Ctrl + >

What are synchronous events ? - The other type of event that causes exceptions .

-> DEFN : exceptions caused by events (aka instructions) executed on the CPU .

· 3 classes of exceptions caused by synchronous events : Trap ,
Fault

,
and Abort

What is a process ?

I
-> An instance of a program loading in memory that includes a status such

Processes

as running , ready ,
or suspended.

· Where a "program" = an executable object file Leof) .

· Not the same as a program.

-> "Processes" are one of the most profound ideas in computer science.

How does the OS give
the illusion -> By applying

2 key abstractions :

that one process has exclusive 2. Virtual Address Space : The OS assigns a virtual address space to the memory

control ofthe CPU & main memory ? segments Cheap
,
stack

,
row

, r-only) of the process. The MMU then performs

virtual address translation .

· This gives each process the illusion that it has exclusive access to main

memory (doesn't have to worry about sharing , occupied spaces ,
etc.

·W/j virtual addressing or an MMU
, Sharing MM With several different

processes would be
very difficult.

2. CBU Control Flow : A Kernel mechanism called context switching is used

by the OS to allow processes to share the CPU .

· "Context" : the values in the CPU register when a process is executing
instructions on the CPU.

-> RECALL COMP301 : Context switching is when a system rapidly switches between

what task it is performing ,
to give the illusion that multiple tasks are being

switches processes ?

↑
values currently held in theCPU registers

- are stored in an additional
memory

performed asynchronously/concurrently
-

even though they aren't.

How does the CPU "context switch" ? -> The CRU interleaves its time between processes. In reality ,
one <PU can only

execute instructions for
one process at a time.

What happens when the <pu
-> When a process "yields" the <PU to be used by another

,
its context - aka the

segment that is assigned to that process.

-> An additional mem . Segment called "saved CPU registers" is created just for this purpose!

· Before
yielding the CPU

,
the process stores the context' in that sagment.

·

When it is time for a process to run on the CPU
,
the 1st thing the<PU does is replace

the current register vals wh the ones stored in that process' memory segment .
Aka,

"Context restored"
Main Memory

Stack Stack Stack

H eap H eap H eap

RIW R/W
& R/w

Read-only Read-only Read-only

Saved Saved Saved

Cpu registers <pu registers Cpu registers

Process 1 Procress] .

Process Model

I
· AKA

,
when a

program becomes a process .

What are the 3 states that
2 · Creation State : When the e.o .

f . is loaded into memory ,
and is then assigned

a process can be in ? a pid ,
or status

.

2.
Ready state : When the process is waiting (its turn) to execute instructions on

the CPU.

· While its waiting for the system to schedule time for it on the cor
,
the

process is held in a data structure.

3

Running State : When the process is actually running
Caka executing instructions (

on the CPU.

&.

Blocked State : When the process has yielded the Cpu-aka
,

is no longer

executing instructions - because an exception was generated .

·

The process is then held in a data structure while it waits for the exception

to complete.

5.
TerminationState : When the process has yielded the cou because it has

What is a pid ?

↑
-> "Process ID"

completed (either normally or abnormally) .

·

"Normally" : Process completed all of its instructions & exited with no error .

· "Abnormally" :
Process exited with some error ; didn't complete all instructions

.

-> A unique nonnegative integer #assigned to each process.

-> The PID is used by the OS to
manage the resources (such as CPU and DRAM)

that are assigned to that process .

What is the flow of
Creation Terminationn. A process will only enter the Creation and

transitions between the S
↓ -r

Termination States one time -

cannot be

States ?
created or terminated multiple times.

Ready Running
-

E
·

A
process is always either Running , Ready ,

or Blocked

Blocked - it can L& dues) enter these states multiple times
.

How do these states actually
-> The Ready State is the "Ready to Run Quere" system component .

exist/manifest in an OS ? - The Blocked State is the "Blocked Quere"

-> The Running State is

the CPU !.Dispatans noting exixs TerminationCreation

N

Blocked Queue /exception
Exception DCompletes

How does the system create

I
-> A program

called crtz . o is performed as a "Startup routine" in
every (

- Process Lifecycle : Creation-

- "C runtime"

a process ? program (in order to turn it into a process) .

It does the following :

Allocates memory for the program (e . g. heap ,
stack

,
r-w

, read-only segments ,
etc.

2.
Reads & interprets the programs eo.

F
. (a .out)

.

· From the e
. o .

f
,

the loader copies the program's instructions (from the text

section) as well
as its read-only global data (

.
ro ELF section)

, and puts

Ene S it into the read-only memory segment .

· Loader copies the global data 1.data ELF section) into the read-write

memory segment
.

3.
The loader then executes the "start-up" instructions defined in the ert. O

objectFile
.

· This program pushes the program's (the one being processified) main function's

runtime arguments for arge and argu2] onto the stack memory segment.↑
2 -

Finally,
the startup program will assign a PID to the process .

4-

-> END: At this point ,
the OS has created the process ! It is then added to the

Ready-to-Run Queve
,
and is now in the Ready

State.

- Process Lifecycle : Termination -

How does the system terminate -> The "Startup routine"
program ,

Crt1 . O
,

also contains exit instructions (called-exity

a process ? which get executed once the created process has completed all of its own instructions.

When does the system execute -> When the program's main function returns ! Whether it is with or without error .

the exit instructions ? · "error" meaning if there was something (like a segmentation fault
,
for ex) that

caused the program to end abruptly.

-> This is why the return type of main is allowed to be void ! However
,

making main a void function rather than

including a return type to indicate

give info about how
your program terminated is poor programming practice.

·For ex
,

"

return EXIT
_

SUCLESS ;
"

,
where EXIT

-
Success is a global integer

variable defined at the top of the file .

What do the exit instructions ->
-exit is basically the ultimate form of garbage collection.

do ? -> Among other operations
,

the exit instructions will unallocate the stack
, heap

,

r-w
, r-only etc. memory segments for the process.

Sol of the process' memory -> No
. A memory segment that holds "process control block data"

, including the

get unallocated
, right ? exit Status (normal

,
abnormal) of the process ,

is not unallocated
.

-> In reality ,
even after the Termination State

,

a process isn't actually fully terminated until its

exit status has been read by the process that created it. Until then
,
its kind ofa "Zombiea

enters the Ready-to-Run quere?

I
2 -

When a process yields" the <PU but hasn't yet completed all of its instructions.

- Process Lifecycle : Ready
-> RELALL : The Ready State means that a process is inside the "Ready to Run

Quere" (R-to- R) system component.

What are the 3 ways that a process
1 -

When a process is created by the system.

3.
When a process is removed from the "blocked greve"

How is a process removed from -

By the Dispatch Handler Program ("Dispatch" for shorts .

the Ready-to-Run greve ? · NOTE the arrow from Ready to Running in the diagram on pg .
109 says

"dispatch" on it !

How does the dispatch handler - The Dispatch Handler performs 3 important steps :

more processes from the queve
1. Checks to see whether the process that is about to "yield" Lexit) the <Pu

to the CPU ? has executed all of its instructions yet or not .

· If it hasn't finished : Dispatcher saves the yielding process
contents in its memory segment

2. Executes amutingalgorithm on the Roto-R quere to identify which↑
2 .

onto the <PU registers .

process should run on the CPU next.

3.

Copies the contents of the next-scheduled process Istored in its mem segment)

-> END: The process can now begin Cor resume) executing its instructions on the CPU !

- Process Lifecycle : Running
-

-> RECALL: The Running state is when a process is currently executing
instructions in the CPU .

What are the 3
ways that a When a process "Finishes"

,
ala when its main function returns .

Running process yields the CPU ? ·

Remember
,
this can mean that the process has successfully executed all of

its instructions and returned normally
.

·

But it can also mean that an error/unrecoverable exception was

generated and main ended abruptly due to an error L'abnormal exit'

· Either way ,
the-exit instructions will be performed & the process will

transition to Termination State .

2.
When an instruction performed by the running process is a blocking event

that generates an asynchronous exception.

· At this point, the Dispatch Handler will more this process to the blocked

gere Jaka
,

the process transitions to Blocked state !)

·

NOTE : the arrow from Running to Blocked in the diagram on pg . 109

says "exception" on it !

scheduling ?

I
-> DEFN :

Setting a timer to interrupt the CPU ; places an upper bound on

What is preemptive
-> The first type of 'preemption'

how long a CPU-bound process can take up /urn on the CPU until it has

↓ give another process a trin.

· When the process is interrupted
,
it will yield the CPU.

-> Relates to idea of context switching/illusion of concurrency !!

What is non-preemptive
-> Second type of 'preemption .

exception" (such as a Fault') was generated while it was

running
on the CPU.

3 .

Okay ,
so what is the third When a process hasn't finished all of its instructions

,
but is temporarily

scheduling ? ↑ -> When a process explicitly yields the CPU because a "recoverable synchronous

way that a process yields suspended because one of the 2 types of preemption has occurred.

the <pu ? · At this point ,
for both cases of premptive and non-preemptive

(from prev , page)
Scheduling ,

the Dispatch handler than adds the preempted process

back to the R-to-R quere .

·

aka
,
the process transitions to Ready State !

-> END: At this point ,
the CPU is unoccupied and the Dispatch Handler

can now perform the operations described in "Process Lifecycle : Ready"
to start running the next process on the CPU

.

- Process Lifecycle : Blocked -

-> RECALL: The Blocked State is when a process is in the"Blocked Queve" system component .

How/why does a process enter - Only 2
way

: The process performs a blocking instruction that generates an

the blocked queve ? asynchronous exception.

·

Typically ,

the asynch exception is an Input/output hardware operation .

-> When the exception is raised
,

the process yields the CPU , and the Dispatcher then

adds it to the blocked quere .

Why do we put stuff in the -> "Asynchronous exception" means that an event external to the CPU has caused an

Blocked greve? interrupt (see notes on Exceptions !) .
This means that the prog needs to wait on

Some external factor .

-> the CPU is a valuable resource - it should never be idle. Why waste valuable Cpu

cycles waiting for the exception to complete ?

· Instead
, put the process in a quere so that another process can run on the CPU in the meantime.

How does a process exit the -> When an "interrupt Signal" is sent to the CPU that indicates that the asynch

Blocked quere ? exception is finished.

· Forex
, an 110 operation : user types input in& then presses

the return key.
-> When this happens

,
a signal handler removes the process from blocked greve & adds

it to the R-to-M gueve .

I
-> RECALL : When you execute a

program with
, la out

,
the loader/loading step is performed,

- Process Management : Process Control Block-

9

which allocates space in memory for the program's stack
, heap ,

ow
, and

read-only memory segments ,

as well as a memory-mapped region for shared libraries.

Each
program has its own one of these segments.

· "Memory Allocation"
, pg .

37

· "Loading Step" , pg . 76

-> An additional memory segment that gets assigned to each process Leach

Control Block (PCB) ?
process has its own PLB)

-> The loader creates the PCB memory Segment during process Creation.

·

Obviously ,
each

program
is at least I process ,

so each program has a

corresponding PCB block in addition to its stack
,heap ,

c . Segments.

What is held in theProcess
-> The elements are grouped into 2 PCB memory segments : the "Cpu context"

Control Block ? section
,

and the "Process Management" section . They each hold the following elements :

What is held in the
-> General purpose registers

- aka the copy of the values held in the <Pu register when

CPU context section ? a process yields the <Pu !

-> The stack registers (frame & stack pointers) and the Program Covet (PC) register.

What is the Process ↑
- The current status/state of the process (Ready , Running ,

Blocked
,

etc.

PCB

-> A
copy of the ALL condition Flag values when a process yields the CPU.

· includes arithmetic overflow flag , carry
out flag ,

etc.

What is held in the
->

the processes' PID
.

Process Management ->

Shcheduling information (e . g. priority
,
response time

,
etc.)

Section ?
-> Parent

, sibling ,
and children processes

-> The CPU Execution Mode of the process (e . g. Ver or Knell

->

Any exceptions that have been generated. Main
memory

How does this look in memory ?
-> For a singular process : Process Management ↑

Who
manages

the PCB ?
-> The system' ala the Kernel ; to read from or

Kernel S CPU context J
-

User-stack
write to a PCB data element

,
the CPU must be executing Lcreated at runtime)

instructions in Kernel mode. shared library
->

Conversely ,
the other

memory segments can only be accessed memory-mapped region

by Pu user mode. user
Run-time heap

-

(created by Malloa

Read/write Segment
C .

data)

Read-only Segment
C . text , rodatal

-

What is a terminal ?

I
-> A user interface program that allows users to run programs

in the

Process API : Fork,exec ,
wait

,
and exit

Linux OS .

-> So far this semester
,
we have been using a Linux terminal in the

"Learnc11" environment .

What is a shell
program

? -> A program that interprets text-based commands (that are entered by
the user) .

-> After interpreting user commands
,

the shell then interacts with the

System (e . g. computers on the user's behalf
,

to control hardware !

-> The LearnCL1 environment uses the "Bash" shell program ,
but there are

several others as well .

Example ? -> In our laptop terminal :
learneli 211$ #Whatthere

s

the Bash CL prompt

What does the shell (Bash)I -2-
do

upon receiving this command? Bash will parse the command string
to identify the program ,

as well as any

program arguments.

· the program
: "Is "

· the argument(s)
: "I"

2-

Bash will then tell the system to run theIs program with the provided

arguments !

· Is then outputs a list of all files in / ,
aka the current directory.

-> So even though typing "Is ...

"

seems very simple ,
what's actually happening

behind the scenes is that am is being executed !

How does the shell create a
-> For Ex : learnelis /a. out

process ?
· The shell interprets this command as "run the a out program that is located in

the current directory
"

·

It does this by calling the exec function : exec)" .
la out")

-

Creating Processes with C-

What is a parent process !
-> An existing process that is being managed by the system .

·

aka
, a process which is in the Ready ,

Running, or Blocked States !

What is a child process ? ↑ -> A process that is Emed by a parent process ,

and then managed by the

system.

·

After it is created by the parent process,
it also goes to either the Ready,

Running, or Blocked State
.

parent & child processes ?

I
· RECALL notes on "connecting programs in the shell" and "learning acL1"

What is an example of
-> Our CLI shell program ,

bash !

learne : 211$. ja. out

-
bash

· bash : the parent process

·

a out : Bash's child process

How can we create a child - With the Fork() function.

process using C ? -> When Fork) is called
,

it creates a new process that is a duplicate/copy of

the parent process that called it.

-> Once fork() is called
,

the system is now managing a new child process (while

continuing to manage the parent as well
.

Example ? -> For EX
,

the following program is our parent process :

-> After calling the fork 2) Function
,
parent will int main (I

2

continue to execute the rest of the
program.

print f ("Parent In") ;

the child 3

pid -
t pidd = Fork 2) ;

process
-> The child process will only execute the printf ("parent & child In") ;

S

remaining instructions after its called (lines printf ("PID = % dIn"
, pidI) ;

function work ?

↑
· doesn't take

any arguments ,
and returns a signed integer

J

6

- - 6) return 0 ; 3

Wait so how does the Fork()
-> Method signature : int Fork)) ;

· "Did
-

E" (line 3 above) is simply a typedef for int that represents process IDs
.

What does Fork() return ? -> Fork() is interesting because it returns twice every time that it is called . Specifically :

· Returns 8 to the child process

· Returns the child's PID to the parent process !

·

If an error occurred
,
returns - 1 to the parent process .

OUTPUT :

So what will the EX above print
->

parent online I only executed once
,
because fork() hadn't been called yet

out ?
parent and child .

lines N-b being executed by the parent process ; for the parent ,
the

PID = 877750
value of pid-t pidI is "OLL7S" . This is the ID of the child process !

parent and child" lines 1-6 being executed again ,separately , by the child process ! For the

PID = 0
·

child
,
the value of pid-t pidI is 0 !

How is the value returned by
- To determine if the remaining instructions should be executed by the parent or

Fork() used ? the child process ,
if we want the parent to execute diff stuff than the child

.

· For ex
, using an if statement like if (pidd == 0)E ...

3

else 5 ... 3

I
-> It also gets an identical copy of the parents PCB. However

,
after Fork)) is performed,

What is happening BTS when
-> The created child process is initially a duplicate of the parent process. It gets a

Fork1) is called ? duplicate copy of the stack
,

r-w
, heap ,

and read only segments.

some of the child's PCB values get updated.

·

e . g .,
the PID in the child's PCB must be changed (since it is a separate process)

-> IMPORTANT :

The child is a copy ,
but a separate process from the parent.

·

The data in the child's virtual address space is mapped to separate ,
vacant

Phys . Mem addresses that aren't being used by any other process (including parent)

How does concurrency workis we can't predict the execution order of the parent & child processes ; it depends

When creating multiple processes on the order determined by the scheduling algorithm.

in a program ? ↑ -> Unlike concurrent threads (RECALL COMP301)
,
the parent & child processes have

completely separate address spaces in memory
- so when changes are made to

variables in the program , they are independent. For ex :

int main() &

in + x = 1 child process created

pidl = Fork() ; ·

Since the variable" pidd" will = 0 For the child but will equal some

if (pidI == 0) E
other number (the process ID) for the parent , the code in this- if-statement will only be performed by the child .

x = x + 2j
terminates the running process ; child will not execute any lines past

exit" this one

X = X-2jo · performed by parent process

exit 10) ; 3

-> After the program above is executed
,
the value of X in

Parent Process memory segment : X = 0

child Process memory segment : X = 2

->

Basically ,

the 2 processes are performing operations on 2 separate , independent versions of

"inty"

- Terminating Processes Withc-

in C can be terminated ?

What are the 3 ways a process

↑
1.

1111II
*

1) D +o =263
1 + 2 +1 + 8 + 16 + 32

2)Sign = 0

exponent = 10000100

Fraction = D , /1011000000000000000

30
· ori 88 = 50813

= 15

5) no idea

D
,
F

,

G
,
I

59 = 0

oSos dritse

9 5
,
2

0001

100 3 ? ↓ J 60081111
tag line

108 line I : same $8 = 000081111
O

ive rid $9=00,O

1000 $10 = 13

9)
10 = 00111 or

= 01111

O 111

T

$10011112

011 1

-x-
-

00001 !

1 = 7

